000280119 001__ 280119
000280119 005__ 20230426083130.0
000280119 0247_ $$2doi$$a10.1103/PhysRevB.92.224511
000280119 0247_ $$2ISSN$$a0163-1829
000280119 0247_ $$2ISSN$$a0556-2805
000280119 0247_ $$2ISSN$$a1095-3795
000280119 0247_ $$2ISSN$$a1098-0121
000280119 0247_ $$2ISSN$$a1550-235X
000280119 0247_ $$2Handle$$a2128/9629
000280119 0247_ $$2WOS$$aWOS:000367060600005
000280119 0247_ $$2altmetric$$aaltmetric:4225868
000280119 037__ $$aFZJ-2015-07865
000280119 082__ $$a530
000280119 1001_ $$0P:(DE-HGF)0$$aViola, Giovanni$$b0
000280119 245__ $$aCollective modes in the fluxonium qubit
000280119 260__ $$aCollege Park, Md.$$bAPS$$c2015
000280119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450787944_21626
000280119 3367_ $$2DataCite$$aOutput Types/Journal article
000280119 3367_ $$00$$2EndNote$$aJournal Article
000280119 3367_ $$2BibTeX$$aARTICLE
000280119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280119 3367_ $$2DRIVER$$aarticle
000280119 520__ $$aSuperconducting qubit designs vary in complexity from single- and few-junction systems, such as the transmon and flux qubits, to the many-junction fluxonium. Here, we consider the question of whether the many degrees of freedom in the fluxonium circuit can limit the qubit coherence time. Such a limitation is in principle possible, due to the interactions between the low-energy, highly anharmonic qubit mode and the higher-energy, weakly anharmonic collective modes. We show that so long as the coupling of the collective modes with the external electromagnetic environment is sufficiently weaker than the qubit-environment coupling, the qubit dephasing induced by the collective modes does not significantly contribute to decoherence. Therefore, the increased complexity of the fluxonium qubit does not constitute by itself a major obstacle for its use in quantum computation architectures.
000280119 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000280119 542__ $$2Crossref$$i2015-12-21$$uhttp://link.aps.org/licenses/aps-default-license
000280119 588__ $$aDataset connected to CrossRef
000280119 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b1$$eCorresponding author$$ufzj
000280119 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.92.224511$$bAmerican Physical Society (APS)$$d2015-12-21$$n22$$p224511$$tPhysical Review B$$v92$$x1098-0121$$y2015
000280119 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.92.224511$$gVol. 92, no. 22, p. 224511$$n22$$p224511$$tPhysical review / B$$v92$$x1098-0121$$y2015
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf$$yOpenAccess
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.gif?subformat=icon$$xicon$$yOpenAccess
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280119 909CO $$ooai:juser.fz-juelich.de:280119$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280119 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000280119 9141_ $$y2015
000280119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280119 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000280119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280119 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280119 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280119 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280119 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000280119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280119 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280119 920__ $$lyes
000280119 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000280119 980__ $$ajournal
000280119 980__ $$aVDB
000280119 980__ $$aUNRESTRICTED
000280119 980__ $$aI:(DE-Juel1)PGI-2-20110106
000280119 9801_ $$aUNRESTRICTED
000280119 9801_ $$aFullTexts
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/19718
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1231930
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.240501
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.080502
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10786
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14270
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7979
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7983
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1175552
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.024521
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13017
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.1138
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.204
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.174513
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.060506
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/5/053026
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.094507
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.137002
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/75/7/072001
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.87.052306
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.094518
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.137003
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.3.011003
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064517
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.184514
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/6/065012
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.123602
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.74.042318
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.180504
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.100506
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.024510
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.042319
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.104508
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.247001
000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.531345