000280119 001__ 280119 000280119 005__ 20230426083130.0 000280119 0247_ $$2doi$$a10.1103/PhysRevB.92.224511 000280119 0247_ $$2ISSN$$a0163-1829 000280119 0247_ $$2ISSN$$a0556-2805 000280119 0247_ $$2ISSN$$a1095-3795 000280119 0247_ $$2ISSN$$a1098-0121 000280119 0247_ $$2ISSN$$a1550-235X 000280119 0247_ $$2Handle$$a2128/9629 000280119 0247_ $$2WOS$$aWOS:000367060600005 000280119 0247_ $$2altmetric$$aaltmetric:4225868 000280119 037__ $$aFZJ-2015-07865 000280119 082__ $$a530 000280119 1001_ $$0P:(DE-HGF)0$$aViola, Giovanni$$b0 000280119 245__ $$aCollective modes in the fluxonium qubit 000280119 260__ $$aCollege Park, Md.$$bAPS$$c2015 000280119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1450787944_21626 000280119 3367_ $$2DataCite$$aOutput Types/Journal article 000280119 3367_ $$00$$2EndNote$$aJournal Article 000280119 3367_ $$2BibTeX$$aARTICLE 000280119 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000280119 3367_ $$2DRIVER$$aarticle 000280119 520__ $$aSuperconducting qubit designs vary in complexity from single- and few-junction systems, such as the transmon and flux qubits, to the many-junction fluxonium. Here, we consider the question of whether the many degrees of freedom in the fluxonium circuit can limit the qubit coherence time. Such a limitation is in principle possible, due to the interactions between the low-energy, highly anharmonic qubit mode and the higher-energy, weakly anharmonic collective modes. We show that so long as the coupling of the collective modes with the external electromagnetic environment is sufficiently weaker than the qubit-environment coupling, the qubit dephasing induced by the collective modes does not significantly contribute to decoherence. Therefore, the increased complexity of the fluxonium qubit does not constitute by itself a major obstacle for its use in quantum computation architectures. 000280119 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000280119 542__ $$2Crossref$$i2015-12-21$$uhttp://link.aps.org/licenses/aps-default-license 000280119 588__ $$aDataset connected to CrossRef 000280119 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b1$$eCorresponding author$$ufzj 000280119 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.92.224511$$bAmerican Physical Society (APS)$$d2015-12-21$$n22$$p224511$$tPhysical Review B$$v92$$x1098-0121$$y2015 000280119 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.92.224511$$gVol. 92, no. 22, p. 224511$$n22$$p224511$$tPhysical review / B$$v92$$x1098-0121$$y2015 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf$$yOpenAccess 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.gif?subformat=icon$$xicon$$yOpenAccess 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000280119 8564_ $$uhttps://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000280119 909CO $$ooai:juser.fz-juelich.de:280119$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000280119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000280119 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000280119 9141_ $$y2015 000280119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000280119 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000280119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000280119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000280119 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000280119 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000280119 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000280119 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000280119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014 000280119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000280119 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000280119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000280119 920__ $$lyes 000280119 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000280119 980__ $$ajournal 000280119 980__ $$aVDB 000280119 980__ $$aUNRESTRICTED 000280119 980__ $$aI:(DE-Juel1)PGI-2-20110106 000280119 9801_ $$aUNRESTRICTED 000280119 9801_ $$aFullTexts 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/19718 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1231930 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.240501 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.111.080502 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10786 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14270 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7979 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7983 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1175552 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.024521 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13017 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.30.1138 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.204 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.174513 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.060506 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/5/053026 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.094507 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.137002 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/75/7/072001 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.87.052306 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.094518 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.137003 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.3.011003 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064517 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.184514 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/6/065012 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.123602 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.74.042318 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.180504 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.100506 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.024510 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.042319 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.104508 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.247001 000280119 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.531345