001     280119
005     20230426083130.0
024 7 _ |a 10.1103/PhysRevB.92.224511
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/9629
|2 Handle
024 7 _ |a WOS:000367060600005
|2 WOS
024 7 _ |a altmetric:4225868
|2 altmetric
037 _ _ |a FZJ-2015-07865
082 _ _ |a 530
100 1 _ |a Viola, Giovanni
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Collective modes in the fluxonium qubit
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1450787944_21626
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Superconducting qubit designs vary in complexity from single- and few-junction systems, such as the transmon and flux qubits, to the many-junction fluxonium. Here, we consider the question of whether the many degrees of freedom in the fluxonium circuit can limit the qubit coherence time. Such a limitation is in principle possible, due to the interactions between the low-energy, highly anharmonic qubit mode and the higher-energy, weakly anharmonic collective modes. We show that so long as the coupling of the collective modes with the external electromagnetic environment is sufficiently weaker than the qubit-environment coupling, the qubit dephasing induced by the collective modes does not significantly contribute to decoherence. Therefore, the increased complexity of the fluxonium qubit does not constitute by itself a major obstacle for its use in quantum computation architectures.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2015-12-21
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Catelani, Gianluigi
|0 P:(DE-Juel1)151130
|b 1
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevb.92.224511
|b American Physical Society (APS)
|d 2015-12-21
|n 22
|p 224511
|3 journal-article
|2 Crossref
|t Physical Review B
|v 92
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.92.224511
|g Vol. 92, no. 22, p. 224511
|0 PERI:(DE-600)2844160-6
|n 22
|p 224511
|t Physical review / B
|v 92
|y 2015
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280119/files/PhysRevB.92.224511.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280119
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1038/19718
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1231930
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.240501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.080502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature10786
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature14270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms7979
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms7983
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1175552
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.024521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature13017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.30.1138
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.174513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.060506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/17/5/053026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.094507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.137002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/75/7/072001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.87.052306
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.094518
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.137003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.3.011003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.064517
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.184514
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/17/6/065012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.123602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.74.042318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.180504
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.100506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.024510
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.76.042319
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.104508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.247001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.531345
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21