000280154 001__ 280154
000280154 005__ 20220930130054.0
000280154 0247_ $$2doi$$a10.1093/cercor/bhv271
000280154 0247_ $$2ISSN$$a1047-3211
000280154 0247_ $$2ISSN$$a1460-2199
000280154 0247_ $$2Handle$$a2128/9715
000280154 0247_ $$2WOS$$aWOS:000371522500032
000280154 0247_ $$2altmetric$$aaltmetric:4787971
000280154 0247_ $$2pmid$$apmid:26582498
000280154 037__ $$aFZJ-2015-07900
000280154 041__ $$aEnglish
000280154 082__ $$a610
000280154 1001_ $$0P:(DE-HGF)0$$aAnstötz, M.$$b0
000280154 245__ $$aDevelopmental Profile, Morphology, and Synaptic Connectivity of Cajal-Retzius Cells in the Postnatal Mouse Hippocampus
000280154 260__ $$aOxford$$bOxford Univ. Press$$c2016
000280154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453284524_22389
000280154 3367_ $$2DataCite$$aOutput Types/Journal article
000280154 3367_ $$00$$2EndNote$$aJournal Article
000280154 3367_ $$2BibTeX$$aARTICLE
000280154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280154 3367_ $$2DRIVER$$aarticle
000280154 520__ $$aCajal–Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these latter functions, we have studied their morphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns. Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low seizure threshold of these brain areas.
000280154 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000280154 588__ $$aDataset connected to CrossRef
000280154 7001_ $$0P:(DE-HGF)0$$aHuang, H.$$b1
000280154 7001_ $$0P:(DE-HGF)0$$aMarchionni, I.$$b2
000280154 7001_ $$0P:(DE-HGF)0$$aHaumann, I.$$b3
000280154 7001_ $$0P:(DE-HGF)0$$aMaccaferri, G.$$b4
000280154 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim$$b5$$eCorresponding author$$ufzj
000280154 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhv271$$gp. bhv271$$n2$$p855-872$$tCerebral cortex$$v26$$x1460-2199$$y2016
000280154 8564_ $$uhttp://cercor.oxfordjournals.org/content/early/2015/11/18/cercor.bhv271.long
000280154 8564_ $$uhttps://juser.fz-juelich.de/record/280154/files/Cereb.%20Cortex-2016-Anst%C3%B6tz-855-72.pdf$$yOpenAccess
000280154 8564_ $$uhttps://juser.fz-juelich.de/record/280154/files/Cereb.%20Cortex-2016-Anst%C3%B6tz-855-72.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280154 8767_ $$92015-10-28$$d2015-10-29$$eHybrid-OA$$jZahlung erfolgt$$pbhv271
000280154 8767_ $$92015-11-19$$d2015-10-29$$ePage charges$$jZahlung erfolgt$$pbhv271
000280154 8767_ $$92015-11-19$$d2015-10-29$$eColour charges$$jZahlung erfolgt$$pbhv271$$z8 Fig.
000280154 909CO $$ooai:juser.fz-juelich.de:280154$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000280154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280154 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280154 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000280154 9141_ $$y2016
000280154 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280154 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280154 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2013
000280154 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000280154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280154 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280154 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280154 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280154 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2013
000280154 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280154 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280154 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280154 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000280154 9801_ $$aUNRESTRICTED
000280154 9801_ $$aFullTexts
000280154 980__ $$ajournal
000280154 980__ $$aVDB
000280154 980__ $$aI:(DE-Juel1)INM-2-20090406
000280154 980__ $$aUNRESTRICTED
000280154 980__ $$aAPC