000280217 001__ 280217
000280217 005__ 20210129221240.0
000280217 0247_ $$2doi$$a10.1007/s00382-015-2589-y
000280217 0247_ $$2ISSN$$a0930-7575
000280217 0247_ $$2ISSN$$a1432-0894
000280217 0247_ $$2Handle$$a2128/9700
000280217 0247_ $$2WOS$$aWOS:000370040100026
000280217 037__ $$aFZJ-2016-00025
000280217 041__ $$aEnglish
000280217 082__ $$a550
000280217 1001_ $$0P:(DE-HGF)0$$aPrein, A. F.$$b0$$eCorresponding author
000280217 245__ $$aPrecipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?
000280217 260__ $$aBerlin$$bSpringer$$c2015
000280217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453109433_16474
000280217 3367_ $$2DataCite$$aOutput Types/Journal article
000280217 3367_ $$00$$2EndNote$$aJournal Article
000280217 3367_ $$2BibTeX$$aARTICLE
000280217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280217 3367_ $$2DRIVER$$aarticle
000280217 500__ $$aonline first
000280217 520__ $$aIn the framework of the EURO-CORDEX initiative an ensemble of European-wide high-resolution regional climate simulations on a 0.11∘(∼12.5km) grid has been generated. This study investigates whether the fine-gridded regional climate models are found to add value to the simulated mean and extreme daily and sub-daily precipitation compared to their coarser-gridded 0.44∘(∼50km) counterparts. Therefore, pairs of fine- and coarse-gridded simulations of eight reanalysis-driven models are compared to fine-gridded observations in the Alps, Germany, Sweden, Norway, France, the Carpathians, and Spain. A clear result is that the 0.11∘ simulations are found to better reproduce mean and extreme precipitation for almost all regions and seasons, even on the scale of the coarser-gridded simulations (50 km). This is primarily caused by the improved representation of orography in the 0.11∘ simulations and therefore largest improvements can be found in regions with substantial orographic features. Improvements in reproducing precipitation in the summer season appear also due to the fact that in the fine-gridded simulations the larger scales of convection are captured by the resolved-scale dynamics . The 0.11∘ simulations reduce biases in large areas of the investigated regions, have an improved representation of spatial precipitation patterns, and precipitation distributions are improved for daily and in particular for 3 hourly precipitation sums in Switzerland. When the evaluation is conducted on the fine (12.5 km) grid, the added value of the 0.11∘ models becomes even more obvious.
000280217 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280217 588__ $$aDataset connected to CrossRef
000280217 7001_ $$0P:(DE-HGF)0$$aGobiet, A.$$b1
000280217 7001_ $$0P:(DE-HGF)0$$aTruhetz, H.$$b2
000280217 7001_ $$0P:(DE-HGF)0$$aKeuler, K.$$b3
000280217 7001_ $$0P:(DE-Juel1)156253$$aGörgen, Klaus$$b4$$ufzj
000280217 7001_ $$0P:(DE-HGF)0$$aTeichmann, C.$$b5
000280217 7001_ $$0P:(DE-HGF)0$$aFox Maule, C.$$b6
000280217 7001_ $$0P:(DE-HGF)0$$avan Meijgaard, E.$$b7
000280217 7001_ $$0P:(DE-HGF)0$$aDéqué, M.$$b8
000280217 7001_ $$0P:(DE-HGF)0$$aNikulin, G.$$b9
000280217 7001_ $$0P:(DE-HGF)0$$aVautard, R.$$b10
000280217 7001_ $$0P:(DE-HGF)0$$aColette, A.$$b11
000280217 7001_ $$0P:(DE-HGF)0$$aKjellström, E.$$b12
000280217 7001_ $$0P:(DE-HGF)0$$aJacob, D.$$b13
000280217 773__ $$0PERI:(DE-600)1471747-5$$a10.1007/s00382-015-2589-y$$n1$$p383-412$$tClimate dynamics$$v46$$x0930-7575$$y2015
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.pdf$$yOpenAccess
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.gif?subformat=icon$$xicon$$yOpenAccess
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280217 8564_ $$uhttps://juser.fz-juelich.de/record/280217/files/art%253A10.1007%252Fs00382-015-2589-y.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280217 909CO $$ooai:juser.fz-juelich.de:280217$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280217 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280217 9141_ $$y2015
000280217 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280217 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280217 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM DYNAM : 2014
000280217 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280217 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280217 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280217 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280217 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280217 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280217 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280217 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280217 920__ $$lyes
000280217 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000280217 980__ $$ajournal
000280217 980__ $$aVDB
000280217 980__ $$aUNRESTRICTED
000280217 980__ $$aI:(DE-Juel1)JSC-20090406
000280217 9801_ $$aUNRESTRICTED
000280217 9801_ $$aFullTexts