000280221 001__ 280221
000280221 005__ 20210129221241.0
000280221 0247_ $$2doi$$a10.1007/s00382-015-2865-x
000280221 0247_ $$2ISSN$$a0930-7575
000280221 0247_ $$2ISSN$$a1432-0894
000280221 0247_ $$2WOS$$aWOS:000382111300003
000280221 0247_ $$2altmetric$$aaltmetric:4618008
000280221 037__ $$aFZJ-2016-00029
000280221 082__ $$a550
000280221 1001_ $$00000-0002-7568-0229$$aCasanueva, A.$$b0$$eCorresponding author
000280221 245__ $$aDaily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations
000280221 260__ $$aBerlin$$bSpringer$$c2016
000280221 3367_ $$2DRIVER$$aarticle
000280221 3367_ $$2DataCite$$aOutput Types/Journal article
000280221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1472734430_15962
000280221 3367_ $$2BibTeX$$aARTICLE
000280221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280221 3367_ $$00$$2EndNote$$aJournal Article
000280221 520__ $$aDaily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days—90pWET, contribution of the very wet days to total precipitation—R95pTOT and number of consecutive dry days—CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since correcting some distributional features typically leads to an improvement of some aspects but to a deterioration of others. Regarding mean seasonal biases before the BC, we find only limited evidence for an added value of the higher resolution in the precipitation intensity and frequency or in the derived indicators. Thereby, evaluation results considerably depend on the RCM, season and indicator considered. High resolution simulations better reproduce the indicators’ spatial patterns, especially in terms of spatial correlation. However, this improvement is not statistically significant after applying specific BC methods.
000280221 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280221 588__ $$aDataset connected to CrossRef
000280221 7001_ $$0P:(DE-HGF)0$$aKotlarski, S.$$b1
000280221 7001_ $$0P:(DE-HGF)0$$aHerrera, S.$$b2
000280221 7001_ $$0P:(DE-HGF)0$$aFernández, J.$$b3
000280221 7001_ $$0P:(DE-HGF)0$$aGutiérrez, J. M.$$b4
000280221 7001_ $$0P:(DE-HGF)0$$aBoberg, F.$$b5
000280221 7001_ $$0P:(DE-HGF)0$$aColette, A.$$b6
000280221 7001_ $$0P:(DE-HGF)0$$aChristensen, O. B.$$b7
000280221 7001_ $$0P:(DE-Juel1)156253$$aGörgen, Klaus$$b8$$ufzj
000280221 7001_ $$0P:(DE-HGF)0$$aJacob, D.$$b9
000280221 7001_ $$0P:(DE-HGF)0$$aKeuler, K.$$b10
000280221 7001_ $$0P:(DE-HGF)0$$aNikulin, G.$$b11
000280221 7001_ $$0P:(DE-HGF)0$$aTeichmann, C.$$b12
000280221 7001_ $$0P:(DE-HGF)0$$aVautard, R.$$b13
000280221 773__ $$0PERI:(DE-600)1471747-5$$a10.1007/s00382-015-2865-x$$n3$$p719-737$$tClimate dynamics$$v47$$x0930-7575$$y2016
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.pdf$$yRestricted
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.gif?subformat=icon$$xicon$$yRestricted
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280221 8564_ $$uhttps://juser.fz-juelich.de/record/280221/files/art_10.1007_s00382-015-2865-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280221 909CO $$ooai:juser.fz-juelich.de:280221$$pVDB
000280221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280221 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280221 9141_ $$y2016
000280221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280221 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM DYNAM : 2014
000280221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280221 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280221 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280221 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280221 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280221 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280221 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280221 920__ $$lyes
000280221 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000280221 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000280221 980__ $$ajournal
000280221 980__ $$aVDB
000280221 980__ $$aUNRESTRICTED
000280221 980__ $$aI:(DE-Juel1)JSC-20090406
000280221 980__ $$aI:(DE-Juel1)IBG-3-20101118
000280221 981__ $$aI:(DE-Juel1)IBG-3-20101118