001     280290
005     20210129221249.0
024 7 _ |a 10.1021/acs.nanolett.5b00104
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000352750200048
|2 WOS
024 7 _ |a altmetric:3801868
|2 altmetric
024 7 _ |a pmid:25768912
|2 pmid
024 7 _ |a 2128/22761
|2 Handle
037 _ _ |a FZJ-2016-00079
082 _ _ |a 540
100 1 _ |a Marinova, Maya
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Depth Profiling Charge Accumulation from a Ferroelectric into a Doped Mott Insulator
260 _ _ |a Washington, DC
|c 2015
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452064465_26992
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The electric field control of functional properties is a crucial goal in oxide-based electronics. Nonvolatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here, we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca1–xCexMnO3, thus providing insight on how interface-engineering can enhance these switching effects.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rault, Julien E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gloter, Alexandre
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nemsak, Slavomir
|0 P:(DE-Juel1)164137
|b 3
700 1 _ |a Palsson, Gunnar K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rueff, Jean-Pascal
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fadley, Charles S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carrétéro, Cécile
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Yamada, Hiroyuki
|0 P:(DE-HGF)0
|b 8
700 1 _ |a March, Katia
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Garcia, Vincent
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Fusil, Stéphane
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Barthélémy, Agnès
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Stéphan, Odile
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Colliex, Christian
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bibes, Manuel
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1021/acs.nanolett.5b00104
|g Vol. 15, no. 4, p. 2533 - 2541
|0 PERI:(DE-600)2048866-X
|n 4
|p 2533 - 2541
|t Nano letters
|v 15
|y 2015
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280290/files/acs.nanolett.5b00104.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280290/files/1708.09160.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280290/files/1708.09160.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280290
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164137
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21