000280303 001__ 280303
000280303 005__ 20240712112838.0
000280303 0247_ $$2doi$$a10.1088/0957-4484/26/7/075703
000280303 0247_ $$2ISSN$$a0957-4484
000280303 0247_ $$2ISSN$$a1361-6528
000280303 0247_ $$2WOS$$aWOS:000349244400018
000280303 037__ $$aFZJ-2016-00092
000280303 082__ $$a530
000280303 1001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b0$$eCorresponding author
000280303 245__ $$aSTEM–EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering
000280303 260__ $$aBristol$$bIOP Publ.$$c2015
000280303 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452066262_26987
000280303 3367_ $$2DataCite$$aOutput Types/Journal article
000280303 3367_ $$00$$2EndNote$$aJournal Article
000280303 3367_ $$2BibTeX$$aARTICLE
000280303 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280303 3367_ $$2DRIVER$$aarticle
000280303 520__ $$aA broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (~35–60 at nm−3) and pressure (0.3–1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.
000280303 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000280303 588__ $$aDataset connected to CrossRef
000280303 7001_ $$0P:(DE-HGF)0$$aLacroix, Bertrand$$b1
000280303 7001_ $$0P:(DE-HGF)0$$aGodinho, Vanda$$b2
000280303 7001_ $$0P:(DE-HGF)0$$aCaballero-Hernández, Jaime$$b3
000280303 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b4
000280303 7001_ $$0P:(DE-HGF)0$$aFernández, Asunción$$b5
000280303 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/26/7/075703$$gVol. 26, no. 7, p. 075703 -$$n7$$p075703 -$$tNanotechnology$$v26$$x1361-6528$$y2015
000280303 8564_ $$uhttps://juser.fz-juelich.de/record/280303/files/pdf.pdf$$yRestricted
000280303 8564_ $$uhttps://juser.fz-juelich.de/record/280303/files/pdf.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280303 909CO $$ooai:juser.fz-juelich.de:280303$$pVDB
000280303 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280303 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280303 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2014
000280303 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280303 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280303 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280303 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280303 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280303 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280303 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280303 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000280303 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280303 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280303 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280303 9141_ $$y2015
000280303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280303 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145413$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280303 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000280303 920__ $$lyes
000280303 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000280303 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000280303 980__ $$ajournal
000280303 980__ $$aVDB
000280303 980__ $$aUNRESTRICTED
000280303 980__ $$aI:(DE-Juel1)PGI-5-20110106
000280303 980__ $$aI:(DE-Juel1)IEK-9-20110218
000280303 981__ $$aI:(DE-Juel1)IET-1-20110218
000280303 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000280303 981__ $$aI:(DE-Juel1)IEK-9-20110218