000280305 001__ 280305
000280305 005__ 20240712100912.0
000280305 0247_ $$2doi$$a10.5194/amtd-8-13423-2015
000280305 0247_ $$2Handle$$a2128/9651
000280305 037__ $$aFZJ-2016-00094
000280305 082__ $$a550
000280305 1001_ $$0P:(DE-HGF)0$$aWeigel, R.$$b0$$eCorresponding author
000280305 245__ $$aThermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft
000280305 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2015
000280305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452070021_26994
000280305 3367_ $$2DataCite$$aOutput Types/Journal article
000280305 3367_ $$00$$2EndNote$$aJournal Article
000280305 3367_ $$2BibTeX$$aARTICLE
000280305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280305 3367_ $$2DRIVER$$aarticle
000280305 520__ $$aParticle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO – High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s−1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of ξ as a function of TAS is provided for instances if PAS measurements are lacking. The ξ-correction yields higher ambient particle concentration by about 15–25 % compared to conventional procedures – an improvement which can be considered as significant for many research applications. The calculated ξ-values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft or instrument geometries. Moreover, the ξ-correction may not cover all impacts originating from high flight velocities and from interferences between the instruments and, e.g., the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.
000280305 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000280305 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000280305 7001_ $$0P:(DE-HGF)0$$aSpichtinger, P.$$b1
000280305 7001_ $$0P:(DE-HGF)0$$aMahnke, C.$$b2
000280305 7001_ $$0P:(DE-HGF)0$$aKlingebiel, M.$$b3
000280305 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b4$$ufzj
000280305 7001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b5$$ufzj
000280305 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b6$$ufzj
000280305 7001_ $$0P:(DE-Juel1)156523$$aCosta, Anja$$b7$$ufzj
000280305 7001_ $$0P:(DE-HGF)0$$aMolleker, S.$$b8
000280305 7001_ $$0P:(DE-HGF)0$$aJurkat, T.$$b9
000280305 7001_ $$0P:(DE-HGF)0$$aMinikin, A.$$b10
000280305 7001_ $$0P:(DE-HGF)0$$aBorrmann, S.$$b11
000280305 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amtd-8-13423-2015$$p13423-13469$$tAtmospheric measurement techniques discussions$$v8$$x1867-8610$$y2015
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.pdf$$yOpenAccess
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.gif?subformat=icon$$xicon$$yOpenAccess
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280305 8564_ $$uhttps://juser.fz-juelich.de/record/280305/files/amtd-8-13423-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280305 909CO $$ooai:juser.fz-juelich.de:280305$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000280305 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156523$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000280305 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000280305 9141_ $$y2015
000280305 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280305 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280305 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280305 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000280305 9801_ $$aUNRESTRICTED
000280305 9801_ $$aFullTexts
000280305 980__ $$ajournal
000280305 980__ $$aVDB
000280305 980__ $$aUNRESTRICTED
000280305 980__ $$aI:(DE-Juel1)IEK-7-20101013
000280305 981__ $$aI:(DE-Juel1)ICE-4-20101013