000280317 001__ 280317
000280317 005__ 20250129092420.0
000280317 0247_ $$2doi$$a10.17586/0021-3454-2015-58-12-1008-1015
000280317 037__ $$aFZJ-2016-00106
000280317 082__ $$a620
000280317 1001_ $$0P:(DE-HGF)0$$aVasilyev, A. A.$$b0$$eCorresponding author
000280317 245__ $$aSimulating Trajectories of Hydrogen and Deuterium Atoms in Polarized Sources
000280317 260__ $$aSankt-Peterburg$$bIzdanie Sankt-Peterburgskogo Gosudarstvennogo Instituta Tocnoj Mechaniki i Optiki (Techniceskogo Universiteta)$$c2015
000280317 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452502932_913
000280317 3367_ $$2DataCite$$aOutput Types/Journal article
000280317 3367_ $$00$$2EndNote$$aJournal Article
000280317 3367_ $$2BibTeX$$aARTICLE
000280317 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280317 3367_ $$2DRIVER$$aarticle
000280317 520__ $$aThe international PolFusion experiment devoted to investigation of nuclear dd-fusion reaction with polarized initial particles is considered. A mathematical model of the polarized source is proposed to simulate high intensity polarized beams using calculation and optimization of the atomic trajectories in high-gradient magnetic fields. A significant achievement of the described model is calculation of three-dimensional trajectories instead of cylindrical two-dimensional calculations used in former models. Basic approaches used in the trajectories calculations are described, results of calculation carried out for ANKE ABS polarized source are presented as an illustration. An advantage of the three-dimensional approach is demonstrated.
000280317 536__ $$0G:(DE-HGF)POF3-612$$a612 - Cosmic Matter in the Laboratory (POF3-612)$$cPOF3-612$$fPOF III$$x0
000280317 588__ $$aDataset connected to CrossRef
000280317 7001_ $$0P:(DE-HGF)0$$aVznuzdaev, M. E.$$b1
000280317 7001_ $$0P:(DE-HGF)0$$aIvshin, K. A.$$b2
000280317 7001_ $$0P:(DE-HGF)0$$aKiselev, S. S.$$b3
000280317 7001_ $$0P:(DE-HGF)0$$aKravtsov, P. A.$$b4
000280317 7001_ $$0P:(DE-HGF)0$$aSolovyev, A. N.$$b5
000280317 7001_ $$0P:(DE-HGF)0$$aSolovyev, I. N.$$b6
000280317 7001_ $$0P:(DE-HGF)0$$aSherman, S. G.$$b7
000280317 7001_ $$0P:(DE-Juel1)133882$$aEngels, R.$$b8
000280317 773__ $$0PERI:(DE-600)164120-7$$a10.17586/0021-3454-2015-58-12-1008-1015$$gp. 1008 - 1015$$n58$$p1008 - 1015$$tIzvestija vyssich ucebnych zavedenij / Priborostroenie$$v12$$x0021-3454$$y2015
000280317 909CO $$ooai:juser.fz-juelich.de:280317$$pVDB
000280317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133882$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280317 9131_ $$0G:(DE-HGF)POF3-612$$1G:(DE-HGF)POF3-610$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Universum$$vCosmic Matter in the Laboratory$$x0
000280317 9141_ $$y2015
000280317 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280317 920__ $$lyes
000280317 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
000280317 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000280317 980__ $$ajournal
000280317 980__ $$aVDB
000280317 980__ $$aUNRESTRICTED
000280317 980__ $$aI:(DE-Juel1)IKP-2-20111104
000280317 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000280317 981__ $$aI:(DE-Juel1)PGI-4-20110106
000280317 981__ $$aI:(DE-Juel1)ZEA-2-20090406