001     280327
005     20210129221255.0
024 7 _ |a 10.1016/j.rse.2015.11.009
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000366764500014
|2 WOS
024 7 _ |a altmetric:4815952
|2 altmetric
037 _ _ |a FZJ-2016-00111
082 _ _ |a 050
100 1 _ |a Konings, Alexandra G.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452065923_26986
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Passive microwave measurements have the potential to estimate vegetation optical depth (VOD), an indicator of aboveground vegetation water content. They are also sensitive to the vegetation scattering albedo and soil moisture. In this work, we propose a novel algorithm to retrieve VOD and soil moisture from time series of dual-polarized L-band radiometric observations along with time-invariant scattering albedo. The method takes advantage of the relatively slow temporal dynamics of early morning vegetation water content and combines a number of consecutive observations to estimate a single VOD. It is termed the multi-temporal dual channel algorithm (MT-DCA). The soil dielectric constant (directly related to soil moisture) of each observation is also retrieved simultaneously. Additionally, the method retrieves a constant albedo, thereby providing for the first time information on global single-scattering albedo variations. The algorithm is tested using three years of L-band passive observations from the NASA Aquarius sensor. The global VOD distribution follows expected gradients of climate and canopy biomass conditions. Its seasonal dynamics follow expected behavior based on precipitation and land cover. The retrieved VOD is closely related to coincident cross-polarized backscatter coefficients. The VOD and dielectric retrievals from MT-DCA are compared to those obtained from implementing the commonly used Land Parameter Retrieval Model (LPRM) algorithm and shown to have less high-frequency noise. There is almost as much variation in MT-DCA retrieved albedo between pixels of a given land cover class than between land cover classes, suggesting the common approach of assigning albedo based on land cover class may not capture its spatial variability. Globally, albedo appears to be primarily sensitive to woody biomass. The proposed algorithm allows for a more accurate accounting of the effects of vegetation on radiometric soil moisture retrievals, and generates new observations of L-band VOD and effective single-scattering albedo. These new datasets are complementary to existing remotely sensed vegetation measurements such as fluorescence and optical-infrared indices.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Piles, María
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rötzer, Kathrina
|0 P:(DE-Juel1)144811
|b 2
700 1 _ |a McColl, Kaighin A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chan, Steven K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Entekhabi, Dara
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.rse.2015.11.009
|g Vol. 172, p. 178 - 189
|0 PERI:(DE-600)1498713-2
|p 178 - 189
|t Remote sensing of environment
|v 172
|y 2016
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/280327/files/1-s2.0-S003442571530198X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280327
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144811
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21