000280333 001__ 280333
000280333 005__ 20240619083521.0
000280333 0247_ $$2doi$$a10.1515/zpch-2014-0553
000280333 0247_ $$2ISSN$$a0942-9352
000280333 0247_ $$2ISSN$$a2196-7156
000280333 0247_ $$2WOS$$aWOS:000359160600008
000280333 037__ $$aFZJ-2016-00117
000280333 041__ $$aEnglish
000280333 082__ $$a540
000280333 1001_ $$0P:(DE-Juel1)145840$$aDesio, Silvia$$b0$$ufzj
000280333 245__ $$aDepletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
000280333 260__ $$aBerlin$$bDe @Gruyter$$c2015
000280333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452069258_26992
000280333 3367_ $$2DataCite$$aOutput Types/Journal article
000280333 3367_ $$00$$2EndNote$$aJournal Article
000280333 3367_ $$2BibTeX$$aARTICLE
000280333 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280333 3367_ $$2DRIVER$$aarticle
000280333 520__ $$aDepletion potentials induced by the rod-like fd-virus between colloidal probe spheres and a flat glass wall were measured using total internal reflection microscopy. The objective of this investigation was to determine the limits of the approximations used for the theoretical description of the depletion pair potential. Data were obtained at rod concentrations as high as 15 times their overlap concentration and the size ratio between the rod length and the sphere radius increased up to L/R = 1.76. With this, the basic assumptions for low density approximation and Derjaguin approximation were clearly violated. Nevertheless, we observed good agreement between experimental data and predictions up to the highest size ratio and in rod concentrations of seven times their overlap concentration. Only at higher concentrations and at the lowest size ratio investigated the experimental data deviate significantly from the simple model.
000280333 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000280333 536__ $$0G:(EU-Grant)262348$$aESMI - European Soft Matter Infrastructure (262348)$$c262348$$fFP7-INFRASTRUCTURES-2010-1$$x1
000280333 588__ $$aDataset connected to CrossRef
000280333 7001_ $$0P:(DE-Juel1)130789$$aLang, Peter R.$$b1$$eCorresponding author$$ufzj
000280333 773__ $$0PERI:(DE-600)2020854-6$$a10.1515/zpch-2014-0553$$gVol. 229, no. 7-8$$n7-8$$p1161-1175$$tZeitschrift für physikalische Chemie$$v229$$x2196-7156$$y2015
000280333 8564_ $$uhttps://juser.fz-juelich.de/record/280333/files/141010_Fd_highconc%20in%20ZPC_revised.docx$$yRestricted
000280333 909CO $$ooai:juser.fz-juelich.de:280333$$pec_fundedresources$$pVDB$$popenaire
000280333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145840$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130789$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280333 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000280333 9141_ $$y2015
000280333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ PHYS CHEM : 2014
000280333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280333 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280333 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280333 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280333 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280333 920__ $$lyes
000280333 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000280333 980__ $$ajournal
000280333 980__ $$aVDB
000280333 980__ $$aI:(DE-Juel1)ICS-3-20110106
000280333 980__ $$aUNRESTRICTED