001     280333
005     20240619083521.0
024 7 _ |a 10.1515/zpch-2014-0553
|2 doi
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2196-7156
|2 ISSN
024 7 _ |a WOS:000359160600008
|2 WOS
037 _ _ |a FZJ-2016-00117
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Desio, Silvia
|0 P:(DE-Juel1)145840
|b 0
|u fzj
245 _ _ |a Depletion Interaction Mediated by fd-Virus: on the Limit of Low Density and Derjaguin Approximation
260 _ _ |a Berlin
|c 2015
|b De @Gruyter
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452069258_26992
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Depletion potentials induced by the rod-like fd-virus between colloidal probe spheres and a flat glass wall were measured using total internal reflection microscopy. The objective of this investigation was to determine the limits of the approximations used for the theoretical description of the depletion pair potential. Data were obtained at rod concentrations as high as 15 times their overlap concentration and the size ratio between the rod length and the sphere radius increased up to L/R = 1.76. With this, the basic assumptions for low density approximation and Derjaguin approximation were clearly violated. Nevertheless, we observed good agreement between experimental data and predictions up to the highest size ratio and in rod concentrations of seven times their overlap concentration. Only at higher concentrations and at the lowest size ratio investigated the experimental data deviate significantly from the simple model.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a ESMI - European Soft Matter Infrastructure (262348)
|0 G:(EU-Grant)262348
|c 262348
|f FP7-INFRASTRUCTURES-2010-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lang, Peter R.
|0 P:(DE-Juel1)130789
|b 1
|e Corresponding author
|u fzj
773 _ _ |a 10.1515/zpch-2014-0553
|g Vol. 229, no. 7-8
|0 PERI:(DE-600)2020854-6
|n 7-8
|p 1161-1175
|t Zeitschrift für physikalische Chemie
|v 229
|y 2015
|x 2196-7156
856 4 _ |u https://juser.fz-juelich.de/record/280333/files/141010_Fd_highconc%20in%20ZPC_revised.docx
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280333
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145840
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130789
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z PHYS CHEM : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21