000280344 001__ 280344
000280344 005__ 20240610120149.0
000280344 0247_ $$2doi$$a10.1039/C5SM01364J
000280344 0247_ $$2Handle$$a2128/9652
000280344 0247_ $$2WOS$$aWOS:000359581400018
000280344 0247_ $$2altmetric$$aaltmetric:4358478
000280344 0247_ $$2pmid$$apmid:26223678
000280344 037__ $$aFZJ-2016-00128
000280344 082__ $$a530
000280344 1001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b0$$eCorresponding author
000280344 245__ $$aEffect of Fluid-Colloid Interactions on the Mobility of a Thermophoretic Microswimmer in Non-Ideal Fluids
000280344 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2015
000280344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452076478_26993
000280344 3367_ $$2DataCite$$aOutput Types/Journal article
000280344 3367_ $$00$$2EndNote$$aJournal Article
000280344 3367_ $$2BibTeX$$aARTICLE
000280344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280344 3367_ $$2DRIVER$$aarticle
000280344 520__ $$aJanus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid–colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid–colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid–colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid–colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
000280344 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000280344 7001_ $$0P:(DE-Juel1)141707$$aSengupta, Ankush$$b1
000280344 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000280344 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C5SM01364J$$n33$$p6703-6715$$tSoft matter$$v11$$x1744-683X$$y2015
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.pdf$$yOpenAccess
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.gif?subformat=icon$$xicon$$yOpenAccess
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280344 8564_ $$uhttps://juser.fz-juelich.de/record/280344/files/c5sm01364j.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280344 909CO $$ooai:juser.fz-juelich.de:280344$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280344 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2014
000280344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280344 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280344 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280344 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000280344 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280344 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280344 9141_ $$y2015
000280344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141707$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280344 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000280344 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000280344 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000280344 9801_ $$aUNRESTRICTED
000280344 9801_ $$aFullTexts
000280344 980__ $$ajournal
000280344 980__ $$aVDB
000280344 980__ $$aUNRESTRICTED
000280344 980__ $$aI:(DE-Juel1)IAS-2-20090406
000280344 980__ $$aI:(DE-Juel1)ICS-2-20110106
000280344 981__ $$aI:(DE-Juel1)IBI-5-20200312
000280344 981__ $$aI:(DE-Juel1)IAS-2-20090406
000280344 981__ $$aI:(DE-Juel1)ICS-2-20110106