001     280378
005     20210129221303.0
024 7 _ |a 10.1016/j.bbamcr.2015.05.025
|2 doi
024 7 _ |a 0167-4889
|2 ISSN
024 7 _ |a 1879-2596
|2 ISSN
024 7 _ |a WOS:000363069200003
|2 WOS
037 _ _ |a FZJ-2016-00155
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Schmidt, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Crowding of receptors induces ring-like adhesions in model membranes
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452516039_911
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The dynamics of formation of macromolecular structures in adherent membranes is a key to a number of cellular processes. However, the interplay between protein reaction kinetics, diffusion and the morphology of the growing domains, governed by membrane mediated interactions, is still poorly understood. Here we show, experimentally and in simulations, that a rich phase diagram emerges from the competition between binding, cooperativity, molecular crowding and membrane spreading. In the cellular context, the spontaneously-occurring organization of adhesion domains in ring-like morphologies is particularly interesting. These are stabilized by the crowding of bulky proteins, and the membrane-transmitted correlations between bonds. Depending on the density of the receptors, this phase may be circumvented, and instead, the adhesions may grow homogeneously in the contact zone between two membranes. If the development of adhesion occurs simultaneously with membrane spreading, much higher accumulation of binders can be achieved depending on the velocity of spreading. The mechanisms identified here, in the context of our mimetic model, may shed light on the structuring of adhesions in the contact zones between two living cells. This article is part of a Special Issue entitled: Mechanobiology.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bihr, Timo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fenz, Susanne
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 3
|u fzj
700 1 _ |a Seifert, Udo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sengupta, Kheya
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Smith, Ana-Sunčana
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.bbamcr.2015.05.025
|g Vol. 1853, no. 11, p. 2984 - 2991
|0 PERI:(DE-600)2209512-3
|n 11
|p 2984 - 2991
|t Biochimica et biophysica acta / Molecular cell research
|v 1853
|y 2015
|x 0167-4889
856 4 _ |u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280378/files/1-s2.0-S0167488915001792-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280378
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BBA-MOL CELL RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BBA-MOL CELL RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21