000280437 001__ 280437
000280437 005__ 20210129221323.0
000280437 0247_ $$2doi$$a10.4203/ccp.107.4
000280437 037__ $$aFZJ-2016-00214
000280437 1001_ $$0P:(DE-HGF)0$$aTeijeiro, C.$$b0
000280437 1112_ $$aThe Fourth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering$$cDubrovnik$$d2015-03-24 - 2015-03-27$$wCroatia
000280437 245__ $$aParallel Bond Order Potentials for Materials Science Simulations
000280437 260__ $$aStirlingshire, UK$$bCivil-Comp Press$$c2015
000280437 300__ $$aPaper 4
000280437 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1452517029_899
000280437 3367_ $$033$$2EndNote$$aConference Paper
000280437 3367_ $$2ORCID$$aCONFERENCE_PAPER
000280437 3367_ $$2DataCite$$aOutput Types/Conference Paper
000280437 3367_ $$2DRIVER$$aconferenceObject
000280437 3367_ $$2BibTeX$$aINPROCEEDINGS
000280437 520__ $$aThe computation of interatomic interactions in materials science is a challenging problem, because of the need for an accurate description of different bonding situations. Density functional theory (DFT) and tight binding (TB) provide good approximations to the problem but have high computational complexity, which limits the size of the systems to be studied. Analytic bond-order potentials (BOPs) provide a coarse-grained computation of interatomic interactions derived from DFT and TB in order to obtain satisfactory approximations, with an order-N increase in the simulation time as the system size grows. Even though BOPs are significantly less expensive than first principle methods, analytic BOPs require an efficient implementation in order to obtain good scalability for large systems.This paper presents a performance evaluation of a parallel implementation of a BOP code, with a description of the most time consuming tasks, and basic concepts for a parallelisation of the simulation. The main contributions of this paper are (1) the analysis of an optimized simulation code in terms of its different routines, (2) the implementation of parallel algorithms that take advantage of the nature of the simulation to obtain high scalability, (3) a performance evaluation of the parallel code on average-sized systems and the proposal of best practices for future developments, and (4) the example of integration of the routine for the precise computation of energies and forces in a molecular dynamics (MD) code.
000280437 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280437 588__ $$aDataset connected to CrossRef Conference
000280437 7001_ $$0P:(DE-HGF)0$$aHammerschmidt, T.$$b1
000280437 7001_ $$0P:(DE-HGF)0$$aDrautz, R.$$b2
000280437 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b3$$ufzj
000280437 773__ $$a10.4203/ccp.107.4
000280437 909CO $$ooai:juser.fz-juelich.de:280437$$pVDB
000280437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280437 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280437 9141_ $$y2015
000280437 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280437 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000280437 980__ $$acontrib
000280437 980__ $$aVDB
000280437 980__ $$aUNRESTRICTED
000280437 980__ $$aI:(DE-Juel1)JSC-20090406