000280447 001__ 280447
000280447 005__ 20240711113727.0
000280447 0247_ $$2doi$$a10.1016/j.fusengdes.2015.10.028
000280447 0247_ $$2ISSN$$a0920-3796
000280447 0247_ $$2ISSN$$a1873-7196
000280447 0247_ $$2WOS$$aWOS:000382422100117
000280447 037__ $$aFZJ-2016-00221
000280447 041__ $$aEnglish
000280447 082__ $$a620
000280447 1001_ $$0P:(DE-Juel1)159558$$aSpilker, Benjamin$$b0$$eCorresponding author
000280447 245__ $$aImpact of the surface quality on the thermal shock performance of beryllium armor tiles for first wall applications
000280447 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000280447 3367_ $$2DRIVER$$aarticle
000280447 3367_ $$2DataCite$$aOutput Types/Journal article
000280447 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508415424_24792
000280447 3367_ $$2BibTeX$$aARTICLE
000280447 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280447 3367_ $$00$$2EndNote$$aJournal Article
000280447 520__ $$aBeryllium will be applied as first wall armor material in ITER. The armor has to sustain high steady state and transient power fluxes. For transient events like edge localized modes, these transient power fluxes rise up to 1.0 GW m−2 with a duration of 0.5–0.75 ms in the divertor region and a significant fraction of this power flux is deposited on the first wall as well. In the present work, the reference beryllium grade for the ITER first wall application S-65 was prepared with various surface conditions and subjected to transient power fluxes (thermal shocks) with ITER relevant loading parameters. After 1000 thermal shocks, a crucial destruction of the entire loaded area was observed and linked to the stress accelerated grain boundary oxidation (SAGBO)/dynamic embrittlement (DE) effect. Furthermore, the study revealed that the majority of the thermally induced cracks formed between 1 and 10 pulses and then grew wider and deeper with increasing pulse number. The surface quality did not influence the cracking behavior of beryllium in any detectable way. However, the polished surface demonstrated the highest resistance against the observed crucial destruction mechanism.
000280447 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000280447 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000280447 588__ $$aDataset connected to CrossRef
000280447 7001_ $$0P:(DE-Juel1)129747$$aLinke, Jochen$$b1$$ufzj
000280447 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, Gerald$$b2$$ufzj
000280447 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b3$$ufzj
000280447 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2015.10.028$$gp. S092037961530315X$$nPart B$$p1692–1696$$tFusion engineering and design$$v109-111$$x0920-3796$$y2015
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.pdf$$yRestricted
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.gif?subformat=icon$$xicon$$yRestricted
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280447 8564_ $$uhttps://juser.fz-juelich.de/record/280447/files/1-s2.0-S092037961530315X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280447 909CO $$ooai:juser.fz-juelich.de:280447$$pVDB
000280447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159558$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b1$$kFZJ
000280447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b2$$kFZJ
000280447 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b3$$kFZJ
000280447 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000280447 9141_ $$y2016
000280447 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280447 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280447 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2014
000280447 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280447 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280447 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280447 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280447 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280447 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280447 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280447 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000280447 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000280447 980__ $$ajournal
000280447 980__ $$aVDB
000280447 980__ $$aI:(DE-Juel1)IEK-2-20101013
000280447 980__ $$aI:(DE-Juel1)IEK-4-20101013
000280447 980__ $$aUNRESTRICTED
000280447 981__ $$aI:(DE-Juel1)IMD-1-20101013
000280447 981__ $$aI:(DE-Juel1)IFN-1-20101013
000280447 981__ $$aI:(DE-Juel1)IEK-4-20101013