001     280465
005     20240625095124.0
024 7 _ |a 10.1021/acs.jctc.5b00208
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a WOS:000362921700040
|2 WOS
024 7 _ |a altmetric:4495335
|2 altmetric
024 7 _ |a pmid:26574279
|2 pmid
037 _ _ |a FZJ-2016-00239
082 _ _ |a 540
100 1 _ |a Bochicchio, Anna
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular View of Ligands Specificity for CAG Repeats in Anti-Huntington Therapy
260 _ _ |a Washington, DC
|c 2015
|b American Chemical Society (ACS)
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452513060_902
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Huntington’s disease is a fatal and devastating neurodegenerative genetic disorder for which there is currently no cure. It is characterized by Huntingtin protein’s mRNA transcripts with 36 or more CAG repeats. Inhibiting the formation of pathological complexes between these expanded transcripts and target proteins may be a valuable strategy against the disease. Yet, the rational design of molecules specifically targeting the expanded CAG repeats is limited by the lack of structural information. Here, we use well-tempered metadynamics-based free energy calculations to investigate pose and affinity of two ligands targeting CAG repeats for which affinities have been previously measured. The first consists of two 4-guanidinophenyl rings linked by an ester group. It is the most potent ligand identified so far, with Kd = 60(30) nM. The second consists of a 4-phenyl dihydroimidazole and 4–1H-indole dihydroimidazole connected by a C–C bond (Kd = 700(80) nM). Our calculations reproduce the experimental affinities and uncover the recognition pattern between ligands’ and their RNA target. They also provide a molecular basis for the markedly different affinity of the two ligands for CAG repeats as observed experimentally. These findings may pave the way for a structure-based hit-to-lead optimization to further improve ligand selectivity toward CAG repeat-containing mRNAs.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 1
|e Corresponding author
700 1 _ |a Tabarrini, Oriana
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Krauβ, Sybille
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|u fzj
773 _ _ |a 10.1021/acs.jctc.5b00208
|g Vol. 11, no. 10, p. 4911 - 4922
|0 PERI:(DE-600)2166976-4
|n 10
|p 4911 - 4922
|t Journal of chemical theory and computation
|v 11
|y 2015
|x 1549-9626
856 4 _ |u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280465/files/acs.jctc.5b00208.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280465
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145921
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 2
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS Jülich ; German Research School for Simulation Sciences
|l GRS
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)GRS-20100316
981 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)GRS-20100316


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21