001     280468
005     20240625095125.0
024 7 _ |a 10.1371/journal.pone.0139095
|2 doi
024 7 _ |a 2128/9664
|2 Handle
024 7 _ |a WOS:000361800700166
|2 WOS
024 7 _ |a altmetric:4556615
|2 altmetric
024 7 _ |a pmid:26407304
|2 pmid
037 _ _ |a FZJ-2016-00242
082 _ _ |a 500
100 1 _ |a Li, Jinyu
|0 P:(DE-Juel1)166112
|b 0
245 _ _ |a Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2)
260 _ _ |a Lawrence, Kan.
|c 2015
|b PLoS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452513731_911
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Flick, Franziska
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Verheugd, Patricia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 3
|u fzj
700 1 _ |a Lüscher, Bernhard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 5
|e Corresponding author
773 _ _ |a 10.1371/journal.pone.0139095
|g Vol. 10, no. 9, p. e0139095 -
|0 PERI:(DE-600)2267670-3
|n 9
|p e0139095 -
|t PLoS one
|v 10
|y 2015
|x 1932-6203
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280468/files/journal.pone.0139095.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:280468
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145921
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145921
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 2
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)INM-9-20140121


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21