000280470 001__ 280470
000280470 005__ 20240625095125.0
000280470 0247_ $$2doi$$a10.1038/leu.2015.131
000280470 0247_ $$2ISSN$$a0887-6924
000280470 0247_ $$2ISSN$$a1476-5551
000280470 0247_ $$2WOS$$aWOS:000366393900030
000280470 037__ $$aFZJ-2016-00244
000280470 082__ $$a610
000280470 1001_ $$0P:(DE-HGF)0$$aChatain, N.$$b0
000280470 245__ $$aRare FLT3 deletion mutants may provide additional treatment options to patients with AML: an approach to individualized medicine
000280470 260__ $$aBasingstoke$$bNature Publ. Group$$c2015
000280470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452513871_913
000280470 3367_ $$2DataCite$$aOutput Types/Journal article
000280470 3367_ $$00$$2EndNote$$aJournal Article
000280470 3367_ $$2BibTeX$$aARTICLE
000280470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280470 3367_ $$2DRIVER$$aarticle
000280470 520__ $$aThe receptor tyrosine kinase (RTK) FLT3 (Fms-like tyrosine kinase-3) is essential for the proliferation, differentiation and survival of hematopoietic cells.1, 2 Mutations in the gene for FLT3 have been described in acute myeloid leukemia (AML) as internal tandem duplications (ITD) localized in the juxtamembrane (JM) domain and FLT3 tyrosine kinase domain (TKD) mutations amounting to 2–30% and 7–10% of patients, respectively. In patients with AML, FLT3-ITD confers an unfavorable prognosis.3 In AML, recently discovered FLT3 mutations involve point mutations as well as short deletions in the JM domain, highlighting the importance for a deeper understanding and further studies of these aberrations.4, 5 The FLT3 JM domain (Supplementary Figure 1a) is indeed the critical regulator region of receptor autoinhibition.6 Kiyoi et al.7 had shown constitutive activation of the FLT3 receptor by deletion of a stretch of amino acids in the JM domain, generally duplicated in FLT3-ITD.In this study, during diagnostic screening for ITD and TKD mutations, we have identified and functionally characterized deletion mutations of FLT3 in the diagnostic work-up of over 6843 AML patients. Deletions were detected in seven patients (0.1%) with newly diagnosed or relapsed AML. All deletions detected by gene scan were in the range of 3–18 base pairs (Supplementary Table 1 and Figure 1a). Subsequent sequencing revealed that all but one of these deletions, which was situated in the transmembrane domain, were in the JM domain, and were simple deletions (n=5) or indels (n=2). In three cases out of seven, the mutations resulted in a premature stop codon. As loss of the wild-type (WT) allele in FLT3-ITD knock-in mice led to a more severe phenotype,8 we analyzed whether the FLT3 mutations were biallelic. However, we could not detect ITD or TKD mutations on the other allele of these patients. Remission samples of patient Id 2–7 confirmed the somatic character of the mutations. We analyzed the transforming potential of such deletions and performed computational modeling to predict the structural effect of two deletions (Id 5: p.Glu598_Tyr599del—delEY; Id 6: p.Phe590_Asp593delinsLeuTyr—delIns).
000280470 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280470 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1
000280470 588__ $$aDataset connected to CrossRef
000280470 7001_ $$0P:(DE-HGF)0$$aPerera, R. C.$$b1
000280470 7001_ $$0P:(DE-Juel1)145921$$aRossetti, G.$$b2$$ufzj
000280470 7001_ $$0P:(DE-HGF)0$$aRossa, J.$$b3
000280470 7001_ $$0P:(DE-Juel1)145614$$aCarloni, P.$$b4$$ufzj
000280470 7001_ $$0P:(DE-HGF)0$$aSchemionek, M.$$b5
000280470 7001_ $$0P:(DE-HGF)0$$aHaferlach, T.$$b6
000280470 7001_ $$0P:(DE-HGF)0$$aBrümmendorf, T. H.$$b7
000280470 7001_ $$0P:(DE-HGF)0$$aSchnittger, S.$$b8
000280470 7001_ $$0P:(DE-HGF)0$$aKoschmieder, S.$$b9$$eCorresponding author
000280470 773__ $$0PERI:(DE-600)2008023-2$$a10.1038/leu.2015.131$$gVol. 29, no. 12, p. 2434 - 2438$$n12$$p2434 - 2438$$tLeukemia$$v29$$x1476-5551$$y2015
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.pdf$$yRestricted
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.gif?subformat=icon$$xicon$$yRestricted
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280470 8564_ $$uhttps://juser.fz-juelich.de/record/280470/files/leu2015131a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280470 909CO $$ooai:juser.fz-juelich.de:280470$$pVDB
000280470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280470 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280470 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000280470 9141_ $$y2015
000280470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280470 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280470 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEUKEMIA : 2014
000280470 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLEUKEMIA : 2014
000280470 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280470 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280470 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280470 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280470 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280470 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280470 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280470 920__ $$lyes
000280470 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000280470 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000280470 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x2
000280470 980__ $$ajournal
000280470 980__ $$aVDB
000280470 980__ $$aUNRESTRICTED
000280470 980__ $$aI:(DE-Juel1)JSC-20090406
000280470 980__ $$aI:(DE-Juel1)INM-9-20140121
000280470 980__ $$aI:(DE-Juel1)IAS-5-20120330
000280470 981__ $$aI:(DE-Juel1)INM-9-20140121
000280470 981__ $$aI:(DE-Juel1)IAS-5-20120330