000280472 001__ 280472 000280472 005__ 20240625095125.0 000280472 0247_ $$2doi$$a10.1016/j.jinorgbio.2015.10.001 000280472 0247_ $$2ISSN$$a0162-0134 000280472 0247_ $$2ISSN$$a1873-3344 000280472 0247_ $$2WOS$$aWOS:000367563200026 000280472 037__ $$aFZJ-2016-00246 000280472 082__ $$a540 000280472 1001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b0$$ufzj 000280472 245__ $$aComputational metallomics of the anticancer drug cisplatin 000280472 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015 000280472 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452514124_900 000280472 3367_ $$2DataCite$$aOutput Types/Journal article 000280472 3367_ $$00$$2EndNote$$aJournal Article 000280472 3367_ $$2BibTeX$$aARTICLE 000280472 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000280472 3367_ $$2DRIVER$$aarticle 000280472 520__ $$aCisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called “Force Matching” procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs. 000280472 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000280472 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1 000280472 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x2 000280472 588__ $$aDataset connected to CrossRef 000280472 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1$$eCorresponding author 000280472 7001_ $$0P:(DE-HGF)0$$aArnesano, Fabio$$b2 000280472 7001_ $$0P:(DE-HGF)0$$aNatile, Giovanni$$b3 000280472 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj 000280472 773__ $$0PERI:(DE-600)1491314-8$$a10.1016/j.jinorgbio.2015.10.001$$gVol. 153, p. 231 - 238$$p231 - 238$$tJournal of inorganic biochemistry$$v153$$x0162-0134$$y2015 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.pdf$$yRestricted 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.gif?subformat=icon$$xicon$$yRestricted 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000280472 909CO $$ooai:juser.fz-juelich.de:280472$$pVDB 000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000280472 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000280472 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1 000280472 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x2 000280472 9141_ $$y2015 000280472 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000280472 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000280472 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INORG BIOCHEM : 2014 000280472 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000280472 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000280472 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000280472 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000280472 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000280472 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000280472 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000280472 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000280472 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000280472 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000280472 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000280472 920__ $$lyes 000280472 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000280472 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000280472 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2 000280472 980__ $$ajournal 000280472 980__ $$aVDB 000280472 980__ $$aUNRESTRICTED 000280472 980__ $$aI:(DE-Juel1)IAS-5-20120330 000280472 980__ $$aI:(DE-Juel1)INM-9-20140121 000280472 980__ $$aI:(DE-Juel1)JSC-20090406 000280472 981__ $$aI:(DE-Juel1)INM-9-20140121 000280472 981__ $$aI:(DE-Juel1)JSC-20090406