000280472 001__ 280472
000280472 005__ 20240625095125.0
000280472 0247_ $$2doi$$a10.1016/j.jinorgbio.2015.10.001
000280472 0247_ $$2ISSN$$a0162-0134
000280472 0247_ $$2ISSN$$a1873-3344
000280472 0247_ $$2WOS$$aWOS:000367563200026
000280472 037__ $$aFZJ-2016-00246
000280472 082__ $$a540
000280472 1001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b0$$ufzj
000280472 245__ $$aComputational metallomics of the anticancer drug cisplatin
000280472 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015
000280472 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452514124_900
000280472 3367_ $$2DataCite$$aOutput Types/Journal article
000280472 3367_ $$00$$2EndNote$$aJournal Article
000280472 3367_ $$2BibTeX$$aARTICLE
000280472 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280472 3367_ $$2DRIVER$$aarticle
000280472 520__ $$aCisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called “Force Matching” procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs.
000280472 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000280472 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x1
000280472 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x2
000280472 588__ $$aDataset connected to CrossRef
000280472 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b1$$eCorresponding author
000280472 7001_ $$0P:(DE-HGF)0$$aArnesano, Fabio$$b2
000280472 7001_ $$0P:(DE-HGF)0$$aNatile, Giovanni$$b3
000280472 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
000280472 773__ $$0PERI:(DE-600)1491314-8$$a10.1016/j.jinorgbio.2015.10.001$$gVol. 153, p. 231 - 238$$p231 - 238$$tJournal of inorganic biochemistry$$v153$$x0162-0134$$y2015
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.pdf$$yRestricted
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.gif?subformat=icon$$xicon$$yRestricted
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280472 8564_ $$uhttps://juser.fz-juelich.de/record/280472/files/1-s2.0-S016201341530091X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280472 909CO $$ooai:juser.fz-juelich.de:280472$$pVDB
000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280472 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000280472 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x1
000280472 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x2
000280472 9141_ $$y2015
000280472 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280472 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280472 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INORG BIOCHEM : 2014
000280472 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280472 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280472 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280472 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280472 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280472 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280472 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280472 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280472 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280472 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280472 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280472 920__ $$lyes
000280472 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000280472 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000280472 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000280472 980__ $$ajournal
000280472 980__ $$aVDB
000280472 980__ $$aUNRESTRICTED
000280472 980__ $$aI:(DE-Juel1)IAS-5-20120330
000280472 980__ $$aI:(DE-Juel1)INM-9-20140121
000280472 980__ $$aI:(DE-Juel1)JSC-20090406
000280472 981__ $$aI:(DE-Juel1)INM-9-20140121
000280472 981__ $$aI:(DE-Juel1)JSC-20090406