000280486 001__ 280486
000280486 005__ 20240619083522.0
000280486 0247_ $$2doi$$a10.1063/1.4942115
000280486 0247_ $$2ISSN$$a0021-9606
000280486 0247_ $$2ISSN$$a1089-7690
000280486 0247_ $$2WOS$$aWOS:000371618800056
000280486 0247_ $$2Handle$$a2128/18981
000280486 0247_ $$2altmetric$$aaltmetric:6013955
000280486 0247_ $$2pmid$$apmid:26931727
000280486 037__ $$aFZJ-2016-00256
000280486 041__ $$aEnglish
000280486 082__ $$a540
000280486 1001_ $$0P:(DE-HGF)0$$aIlie, I.$$b0$$eCorresponding author
000280486 245__ $$aA coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation
000280486 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2016
000280486 3367_ $$2DRIVER$$aarticle
000280486 3367_ $$2DataCite$$aOutput Types/Journal article
000280486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1459766110_5281
000280486 3367_ $$2BibTeX$$aARTICLE
000280486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280486 3367_ $$00$$2EndNote$$aJournal Article
000280486 520__ $$aParticles in simulations are traditionally endowed with fixed interactions. While this is appropriate for particles representing atoms or molecules, objects with significant internal dynamics—like sequences of amino acids or even an entire protein—are poorly modelled by invariable particles. We develop a highly coarse grained polymorph patchy particle with the ultimate aim of simulating proteins as chains of particles at the secondary structure level. Conformational changes, e.g., a transition between disordered and β-sheet states, are accommodated by internal coordinates that determine the shape and interaction characteristics of the particles. The internal coordinates, as well as the particle positions and orientations, are propagated by Brownian Dynamics in response to their local environment. As an example of the potential offered by polymorph particles, we model the amyloidogenic intrinsically disordered proteinα-synuclein, involved in Parkinson’s disease, as a single particle with two internal states. The simulations yield oligomers of particles in the disordered state and fibrils of particles in the “misfolded” cross-β-sheet state. The aggregationdynamics is complex, as aggregates can form by a direct nucleation-and-growth mechanism and by two-step-nucleation through conversions between the two cluster types. The aggregationdynamics is complex, with fibrils formed by direct nucleation-and-growth, by two-step-nucleation through the conversion of an oligomer and by auto-catalysis of this conversion.
000280486 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000280486 588__ $$aDataset connected to CrossRef
000280486 7001_ $$0P:(DE-HGF)0$$aden Otter, W. K.$$b1
000280486 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b2$$ufzj
000280486 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4942115$$gVol. 144, no. 8, p. 085103 -$$n8$$p085103$$tThe journal of chemical physics$$v144$$x1089-7690$$y2016
000280486 8564_ $$uhttps://juser.fz-juelich.de/record/280486/files/1.4942115.pdf$$yOpenAccess
000280486 8564_ $$uhttps://juser.fz-juelich.de/record/280486/files/1.4942115.gif?subformat=icon$$xicon$$yOpenAccess
000280486 8564_ $$uhttps://juser.fz-juelich.de/record/280486/files/1.4942115.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280486 8564_ $$uhttps://juser.fz-juelich.de/record/280486/files/1.4942115.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000280486 909CO $$ooai:juser.fz-juelich.de:280486$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000280486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280486 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000280486 9141_ $$y2016
000280486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2014
000280486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280486 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280486 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280486 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280486 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280486 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280486 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280486 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280486 920__ $$lyes
000280486 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000280486 9801_ $$aFullTexts
000280486 980__ $$ajournal
000280486 980__ $$aVDB
000280486 980__ $$aUNRESTRICTED
000280486 980__ $$aI:(DE-Juel1)ICS-3-20110106