000280488 001__ 280488
000280488 005__ 20220930130055.0
000280488 0247_ $$2doi$$a10.1093/cercor/bhv262
000280488 0247_ $$2ISSN$$a1047-3211
000280488 0247_ $$2ISSN$$a1460-2199
000280488 0247_ $$2Handle$$a2128/9668
000280488 0247_ $$2WOS$$aWOS:000370972500039
000280488 0247_ $$2altmetric$$aaltmetric:4800405
000280488 0247_ $$2pmid$$apmid:26534907
000280488 037__ $$aFZJ-2016-00258
000280488 082__ $$a610
000280488 1001_ $$0P:(DE-HGF)0$$aOrgs, Guido$$b0$$eCorresponding author
000280488 245__ $$aConstructing Visual Perception of Body Movement with the Motor Cortex
000280488 260__ $$aOxford$$bOxford Univ. Press$$c2016
000280488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452514765_902
000280488 3367_ $$2DataCite$$aOutput Types/Journal article
000280488 3367_ $$00$$2EndNote$$aJournal Article
000280488 3367_ $$2BibTeX$$aARTICLE
000280488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280488 3367_ $$2DRIVER$$aarticle
000280488 520__ $$aThe human brain readily perceives fluent movement from static input. Using functional magnetic resonance imaging, we investigated brain mechanisms that mediate fluent apparent biological motion (ABM) perception from sequences of body postures. We presented body and nonbody stimuli varying in objective sequence duration and fluency of apparent movement. Three body postures were ordered to produce a fluent (ABC) or a nonfluent (ACB) apparent movement. This enabled us to identify brain areas involved in the perceptual reconstruction of body movement from identical lower-level static input. Participants judged the duration of a rectangle containing body/nonbody sequences, as an implicit measure of movement fluency. For body stimuli, fluent apparent motion sequences produced subjectively longer durations than nonfluent sequences of the same objective duration. This difference was reduced for nonbody stimuli. This body-specific bias in duration perception was associated with increased blood oxygen level-dependent responses in the primary (M1) and supplementary motor areas. Moreover, fluent ABM was associated with increased functional connectivity between M1/SMA and right fusiform body area. We show that perceptual reconstruction of fluent movement from static body postures does not merely enlist areas traditionally associated with visual body processing, but involves cooperative recruitment of motor areas, consistent with a “motor way of seeing”. 
000280488 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000280488 588__ $$aDataset connected to CrossRef
000280488 7001_ $$0P:(DE-Juel1)131718$$aDovern, Anna$$b1
000280488 7001_ $$0P:(DE-HGF)0$$aHagura, Nobuhiro$$b2
000280488 7001_ $$0P:(DE-HGF)0$$aHaggard, Patrick$$b3
000280488 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b4
000280488 7001_ $$0P:(DE-HGF)0$$aWeiss, Peter H.$$b5
000280488 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhv262$$gVol. 26, no. 1, p. 440 - 449$$n1$$p440 - 449$$tCerebral cortex$$v26$$x1460-2199$$y2016
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.pdf$$yOpenAccess
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.gif?subformat=icon$$xicon$$yOpenAccess
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280488 8564_ $$uhttps://juser.fz-juelich.de/record/280488/files/Cereb.%20Cortex-2016-Orgs-440-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280488 8767_ $$923.09.2014$$d2014-11-05$$eSubmission fee$$jZahlung erfolgt$$zUSD 125,-
000280488 909CO $$ooai:juser.fz-juelich.de:280488$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000280488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131718$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280488 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000280488 9141_ $$y2016
000280488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280488 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2013
000280488 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000280488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280488 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280488 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280488 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2013
000280488 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280488 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280488 920__ $$lyes
000280488 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000280488 9801_ $$aUNRESTRICTED
000280488 9801_ $$aFullTexts
000280488 980__ $$ajournal
000280488 980__ $$aVDB
000280488 980__ $$aUNRESTRICTED
000280488 980__ $$aI:(DE-Juel1)INM-3-20090406
000280488 980__ $$aAPC