000280533 001__ 280533
000280533 005__ 20230426083131.0
000280533 0247_ $$2doi$$a10.1103/PhysRevB.92.024407
000280533 0247_ $$2ISSN$$a0163-1829
000280533 0247_ $$2ISSN$$a0556-2805
000280533 0247_ $$2ISSN$$a1095-3795
000280533 0247_ $$2ISSN$$a1098-0121
000280533 0247_ $$2ISSN$$a1550-235X
000280533 0247_ $$2Handle$$a2128/9669
000280533 0247_ $$2WOS$$aWOS:000357635100002
000280533 037__ $$aFZJ-2016-00301
000280533 082__ $$a530
000280533 1001_ $$0P:(DE-Juel1)159140$$aMichel, E.$$b0
000280533 245__ $$aSpin waves in ultrathin hexagonal cobalt films on W(110), Cu(111), and Au(111) surfaces
000280533 260__ $$aCollege Park, Md.$$bAPS$$c2015
000280533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452515538_914
000280533 3367_ $$2DataCite$$aOutput Types/Journal article
000280533 3367_ $$00$$2EndNote$$aJournal Article
000280533 3367_ $$2BibTeX$$aARTICLE
000280533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280533 3367_ $$2DRIVER$$aarticle
000280533 520__ $$aSpin wave spectra of ultrathin epitaxial cobalt films deposited on W(110), Cu(111), and Au(111) surfaces are studied in the wave-vector regime between 0.1Å−1 and 0.7Å−1 using inelastic electron scattering with 6 meV energy resolution. Up to three different spin wave modes are resolved for wave vectors q∥<0.35Å−1. The modes are identified as the acoustic mode and standing modes with one and two nodes inside the film. The relative weight of the modes in a particular spectrum may depend critically on the electron impact energy. For larger wave vectors beyond q∥>0.35Å−1 and layers thicker than five atom layers the separate modes merge into a single, broad loss feature. Since the shape and position of the loss feature depend on the electron impact energy, a separation into different modes is nevertheless possible for not too large wave vectors. The spin wave dispersion curves of films grown on W(110) agree with those observed on Cu(111) if one takes into account that on copper the cobalt grows in islands so that the mean height of the islands is higher than the nominal coverage. On films grown on Au(111) the low wave vector spin waves are buried in the high elastic diffuse scattering caused by the considerable disorder in the films. The broader appearance of the spectra at higher wave vectors compared to films grown on W(110) and Cu(111) is quantitatively accounted for by disorder-induced kinematic broadening. Because of the granular growth on copper and gold primarily the spin wave spectrum of cobalt films on W(110) is amenable to quantitative theoretical analysis. Such an analysis is not available at present. We show however, that the dispersion curves are incompatible with the Heisenberg model as long as only a single, layer-independent exchange coupling constant is invoked.
000280533 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000280533 542__ $$2Crossref$$i2015-07-08$$uhttp://link.aps.org/licenses/aps-default-license
000280533 588__ $$aDataset connected to CrossRef
000280533 7001_ $$0P:(DE-Juel1)128768$$aIbach, H.$$b1$$eCorresponding author
000280533 7001_ $$0P:(DE-Juel1)130948$$aSchneider, C. M.$$b2
000280533 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.92.024407$$bAmerican Physical Society (APS)$$d2015-07-08$$n2$$p024407$$tPhysical Review B$$v92$$x1098-0121$$y2015
000280533 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.92.024407$$gVol. 92, no. 2, p. 024407$$n2$$p024407$$tPhysical review / B$$v92$$x1098-0121$$y2015
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.pdf$$yOpenAccess
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.gif?subformat=icon$$xicon$$yOpenAccess
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280533 8564_ $$uhttps://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280533 909CO $$ooai:juser.fz-juelich.de:280533$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159140$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128768$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280533 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000280533 9141_ $$y2015
000280533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280533 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000280533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280533 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280533 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280533 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000280533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280533 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280533 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000280533 980__ $$ajournal
000280533 980__ $$aVDB
000280533 980__ $$aUNRESTRICTED
000280533 980__ $$aI:(DE-Juel1)PGI-6-20110106
000280533 9801_ $$aUNRESTRICTED
000280533 9801_ $$aFullTexts
000280533 999C5 $$1C. M. Schneider$$2Crossref$$oC. M. Schneider Handbook of Surface Science 2000$$tHandbook of Surface Science$$y2000
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/71/5/056501
000280533 999C5 $$1D. L. Mills$$2Crossref$$oD. L. Mills Ultrathin Magnetic Structures 1994$$tUltrathin Magnetic Structures$$y1994
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.5100
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.177204
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(67)90250-8
000280533 999C5 $$1H. Ibach$$2Crossref$$oH. Ibach Electron Energy Loss Spectroscopy and Surface Vibrations 1982$$tElectron Energy Loss Spectroscopy and Surface Vibrations$$y1982
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1597954
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.147201
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2014.07.015
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.064413
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.184420
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2004.05.051
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tsf.2004.06.029
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.167201
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.174404
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2014.09.006
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/39/394007
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3670731
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.elspec.2012.01.001
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165436
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.127202
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.144401
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physrep.2014.08.001
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.094438
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.054406
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.15933
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.1794
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.125437
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.13043
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.236801
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.257203
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.107206
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/39/394008
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(97)00270-7
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(95)01088-2
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10791
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.10354
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.3344
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/PROC-475-283
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.75.2035
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.345925
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.42.1066
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.120.91
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.184404
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.137203
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.097205
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.153405
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/25/13/136001
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)00829-9
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.89.075438
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.50.1277
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.21.3057
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.44.407
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0368-2048(93)80144-B
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.7479
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.087203
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0368-2048(98)00454-X
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s003390051326
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(94)90450-2
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(96)00037-4
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.057202
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.187201
000280533 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.2126