001     280533
005     20230426083131.0
024 7 _ |a 10.1103/PhysRevB.92.024407
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/9669
|2 Handle
024 7 _ |a WOS:000357635100002
|2 WOS
037 _ _ |a FZJ-2016-00301
082 _ _ |a 530
100 1 _ |a Michel, E.
|0 P:(DE-Juel1)159140
|b 0
245 _ _ |a Spin waves in ultrathin hexagonal cobalt films on W(110), Cu(111), and Au(111) surfaces
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452515538_914
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Spin wave spectra of ultrathin epitaxial cobalt films deposited on W(110), Cu(111), and Au(111) surfaces are studied in the wave-vector regime between 0.1Å−1 and 0.7Å−1 using inelastic electron scattering with 6 meV energy resolution. Up to three different spin wave modes are resolved for wave vectors q∥<0.35Å−1. The modes are identified as the acoustic mode and standing modes with one and two nodes inside the film. The relative weight of the modes in a particular spectrum may depend critically on the electron impact energy. For larger wave vectors beyond q∥>0.35Å−1 and layers thicker than five atom layers the separate modes merge into a single, broad loss feature. Since the shape and position of the loss feature depend on the electron impact energy, a separation into different modes is nevertheless possible for not too large wave vectors. The spin wave dispersion curves of films grown on W(110) agree with those observed on Cu(111) if one takes into account that on copper the cobalt grows in islands so that the mean height of the islands is higher than the nominal coverage. On films grown on Au(111) the low wave vector spin waves are buried in the high elastic diffuse scattering caused by the considerable disorder in the films. The broader appearance of the spectra at higher wave vectors compared to films grown on W(110) and Cu(111) is quantitatively accounted for by disorder-induced kinematic broadening. Because of the granular growth on copper and gold primarily the spin wave spectrum of cobalt films on W(110) is amenable to quantitative theoretical analysis. Such an analysis is not available at present. We show however, that the dispersion curves are incompatible with the Heisenberg model as long as only a single, layer-independent exchange coupling constant is invoked.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
542 _ _ |i 2015-07-08
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ibach, H.
|0 P:(DE-Juel1)128768
|b 1
|e Corresponding author
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 2
773 1 8 |a 10.1103/physrevb.92.024407
|b American Physical Society (APS)
|d 2015-07-08
|n 2
|p 024407
|3 journal-article
|2 Crossref
|t Physical Review B
|v 92
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.92.024407
|g Vol. 92, no. 2, p. 024407
|0 PERI:(DE-600)2844160-6
|n 2
|p 024407
|t Physical review / B
|v 92
|y 2015
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280533/files/PhysRevB.92.024407.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280533
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159140
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128768
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |1 C. M. Schneider
|y 2000
|2 Crossref
|t Handbook of Surface Science
|o C. M. Schneider Handbook of Surface Science 2000
999 C 5 |a 10.1088/0034-4885/71/5/056501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 D. L. Mills
|y 1994
|2 Crossref
|t Ultrathin Magnetic Structures
|o D. L. Mills Ultrathin Magnetic Structures 1994
999 C 5 |a 10.1103/PhysRevB.56.5100
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.177204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(67)90250-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 H. Ibach
|y 1982
|2 Crossref
|t Electron Energy Loss Spectroscopy and Surface Vibrations
|o H. Ibach Electron Energy Loss Spectroscopy and Surface Vibrations 1982
999 C 5 |a 10.1063/1.1597954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.147201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2014.07.015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.064413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.184420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2004.05.051
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tsf.2004.06.029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.167201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.174404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2014.09.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/26/39/394007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3670731
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.elspec.2012.01.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.165436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.127202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.144401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2014.08.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.094438
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.054406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.51.15933
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.1794
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.125437
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.47.13043
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.236801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.257203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.107206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/26/39/394008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(97)00270-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(95)01088-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.10791
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.10354
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.65.3344
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1557/PROC-475-283
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.75.2035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.345925
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.42.1066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.120.91
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.184404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.137203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.097205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.153405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/25/13/136001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(01)00829-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.075438
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.50.1277
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.21.3057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.44.407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0368-2048(93)80144-B
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.53.7479
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.087203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0368-2048(98)00454-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s003390051326
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(94)90450-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(96)00037-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.057202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.187201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.2126
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21