000280538 001__ 280538
000280538 005__ 20240610120712.0
000280538 037__ $$aFZJ-2016-00306
000280538 041__ $$aEnglish
000280538 1001_ $$0P:(DE-Juel1)145470$$aSchuck, Martin$$b0$$eCorresponding author$$ufzj
000280538 1112_ $$a2015 MRS Fall Meeting & Exhibit$$cBoston, MA$$d2015-11-29 - 2015-12-04$$g2015MRSFall$$wUSA
000280538 245__ $$aDeposition of monocrystalline trigonal Ge_x Sb_y Te_z by Metal Organic Vapour Phase Epitaxy
000280538 260__ $$c2015
000280538 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1452697851_2870
000280538 3367_ $$033$$2EndNote$$aConference Paper
000280538 3367_ $$2DataCite$$aOutput Types/Conference Poster
000280538 3367_ $$2DRIVER$$aconferenceObject
000280538 3367_ $$2ORCID$$aCONFERENCE_POSTER
000280538 3367_ $$2BibTeX$$aINPROCEEDINGS
000280538 502__ $$cRWTH Aachen
000280538 520__ $$aPhase change memory (PCM) based on chalcogenides such as the Ge-Sb-Te compounds along the Sb2Te3 – GeTe pseudo-binary line have been widely used for optical data storage and in recent years also as nonvolatile resistive memory devices. In these applications, the ultra-fast and reversible phase change between the amorphous and the metastable cubic crystalline phase, associated with a high contrast in reflectivity and resistivity is used for data storage. They are deposited in the amorphous state by atomic layer deposition or physical vapour deposition (sputtering). Due to the lack of applications, the thermodynamically stable crystalline hexagonal phase wasnot in the centre of attention up to now. However, recently superlattices of highly textured hexagonal Sb2Te3 – GeTe layers have received increasing interest due to an altered switching mechanism with reduced switching energy.Switching is field induced and occurs at the interfaces of the materials between two crystalline states circumventing melting for the phase change. The layered structure of monocrystalline hexagonal Ge-Sb-Te inherently resembles the superlattice structure with respect to atomic stacking and crystal orientation to the substrate. For this reason, the preparation and intense study of epitaxial, hexagonal Ge-Sb-Te can be of fundamental interest for future applications. In this contribution, we present the growth and characterization of crystalline Ge-Sb-Te films on Si (111) deposited by MOVPE. At a reactor pressure of 50 hPa and growth temperatures around 450°C epitaxial films are grown using nitrogen as the carrier gas to transport the precursors DETe, TESb and digermane to the reactor. Different partial pressures of the precursors were employed to vary the film composition. The morphology of the deposited material was investigated using AFM and SEM, while the structure of the as-grown samples was studied by XPS, XRD and TEM. The chemical composition was determined using EDS.The two compositions Ge1Sb2Te4 and Ge2Sb2Te5 were controllably achieved. XRD studies indicate, that the 100nm thick Ge-Sb-Te is crystallized in the stable hexagonal structure (P-3m1 or R-3m). TEM investigations reveal that the Ge, Sb and Te atoms form building blocks, consisting of 7 (Ge1Sb2Te4) or 9 (Ge2Sb2Te5) alternating cation and anion layers in parallel to the Si (111) substrate surface, stacked along the [0001] axis. These building blocks are separated by van der Waals gaps originating from hexagonal Sb2Te3, where they are naturally present. The samples are monocrystalline and exhibit a low amount of defects. XPS reveals oxidation mainly of Ge and Sb at the surface of the films. Additionally the occupation of the cation sites by Ge and Sb atoms in the hexagonal lattice was investigated by TEM and XPS.
000280538 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000280538 536__ $$0G:(EU-Grant)310339$$aSYNAPSE - SYnthesis and functionality of chalcogenide NAnostructures for PhaSE change memories (310339)$$c310339$$fFP7-NMP-2012-SMALL-6$$x1
000280538 7001_ $$0P:(DE-Juel1)145686$$aRiess, Sally$$b1$$ufzj
000280538 7001_ $$0P:(DE-Juel1)159411$$aBornhöfft, Manuel$$b2$$ufzj
000280538 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3$$ufzj
000280538 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4$$ufzj
000280538 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b5$$ufzj
000280538 7001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b6$$ufzj
000280538 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b7$$ufzj
000280538 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
000280538 909CO $$ooai:juser.fz-juelich.de:280538$$pec_fundedresources$$pVDB$$popenaire
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145470$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145686$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159411$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000280538 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280538 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280538 9141_ $$y2015
000280538 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280538 920__ $$lyes
000280538 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000280538 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000280538 980__ $$aposter
000280538 980__ $$aVDB
000280538 980__ $$aUNRESTRICTED
000280538 980__ $$aI:(DE-Juel1)PGI-9-20110106
000280538 980__ $$aI:(DE-Juel1)PGI-5-20110106
000280538 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000280538 981__ $$aI:(DE-Juel1)PGI-5-20110106