000280555 001__ 280555
000280555 005__ 20210129221345.0
000280555 0247_ $$2doi$$a10.1016/j.advwatres.2015.10.010
000280555 0247_ $$2ISSN$$a0309-1708
000280555 0247_ $$2ISSN$$a1872-9657
000280555 0247_ $$2WOS$$aWOS:000365623500001
000280555 037__ $$aFZJ-2016-00323
000280555 082__ $$a550
000280555 1001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b0$$eCorresponding author
000280555 245__ $$aData assimilation for improved predictions of integrated terrestrial systems
000280555 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000280555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452603221_1772
000280555 3367_ $$2DataCite$$aOutput Types/Journal article
000280555 3367_ $$00$$2EndNote$$aJournal Article
000280555 3367_ $$2BibTeX$$aARTICLE
000280555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280555 3367_ $$2DRIVER$$aarticle
000280555 520__ $$aPredicting states or fluxes in a terrestrial system, such as, for example, a river discharge, groundwater recharge or air temperature is done with terrestrial system models, which describe the processes in an approximate way. Terrestrial system model predictions are affected by uncertainty. Important sources of uncertainty are related to model forcings, initial conditions and boundary conditions, model parameters and the model itself. The relative importance of the different uncertainty sources varies according to the specific terrestrial compartment for which the model is built. For example, for weather prediction with atmospheric models it is believed that a dominant source of uncertainty is the initial model condition [12]. For groundwater models on the other hand, a general assumption is that parameter uncertainty dominates the total model prediction uncertainty.Sequential data assimilation techniques allow improving model predictions and reducing their uncertainty by correcting the predictions with measurement data. This can be done on-line with real-time measurement data. It can also be done off-line by updating model predictions with time series of historical data. Off-line data assimilation is especially interesting for estimating parameters in combination with model states, or for a reanalysis of past states. The most applied sequential data assimilation techniques for terrestrial system model predictions are the Ensemble Kalman Filter (EnKF) [8] and the Particle Filter (PF) [2]. EnKF provides an optimal solution for Gaussian distributed parameters, states and measurement data, whereas the PF is more flexible but computationally more expensive and provides in theory an optimal solution independent of the distribution type
000280555 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000280555 588__ $$aDataset connected to CrossRef
000280555 7001_ $$0P:(DE-HGF)0$$aNeuweiler, Insa$$b1
000280555 773__ $$0PERI:(DE-600)2023320-6$$a10.1016/j.advwatres.2015.10.010$$gVol. 86, p. 257 - 259$$p257 - 259$$tAdvances in water resources$$v86$$x0309-1708$$y2015
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.pdf$$yRestricted
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.gif?subformat=icon$$xicon$$yRestricted
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280555 8564_ $$uhttps://juser.fz-juelich.de/record/280555/files/1-s2.0-S030917081500247X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280555 909CO $$ooai:juser.fz-juelich.de:280555$$pVDB:Earth_Environment$$pVDB
000280555 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280555 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280555 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV WATER RESOUR : 2014
000280555 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280555 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280555 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280555 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280555 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280555 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280555 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280555 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280555 9141_ $$y2015
000280555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280555 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000280555 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000280555 980__ $$ajournal
000280555 980__ $$aVDB
000280555 980__ $$aUNRESTRICTED
000280555 980__ $$aI:(DE-Juel1)IBG-3-20101118