001     280557
005     20210129221345.0
024 7 _ |a 10.1016/j.actamat.2015.02.032
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a WOS:000353753700001
|2 WOS
037 _ _ |a FZJ-2016-00325
082 _ _ |a 670
100 1 _ |a Etier, Morad
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Magnetoelectric coupling on multiferroic cobalt ferrite–barium titanate ceramic composites with different connectivity schemes
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452599060_1770
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this article we report on the synthesis and multiferroic properties of cobalt ferrite (CoFe2O4)–barium titanate (BaTiO3) biphasic composites. The initial composite nanopowder was synthesized by a combination of co-precipitation and organosol methods. A ceramic sample with (3–0) connectivity, i.e. BaTiO3 grains in a CoFe2O4 matrix was obtained by a combination of spark plasma sintering and annealing. In order to understand the correlations between morphology, electric properties, and magnetization, we present a detailed study at different preparation steps and compare it to the properties of a conventionally sintered sample with the traditional (0–3) connectivity, i.e. CoFe2O4 grains in a BaTiO3 matrix. We observe that the (3–0) sample shows improved magnetic properties in comparison to the conventionally sintered composite of the same composition. In spite of relatively large leakage current for the (3–0) sample compared to the traditional (0–3) one, it exhibits a converse magnetoelectric effect that follows the Hdc dependence of the piezomagnetic coefficient. The magnetic field-dependence of electric polarization at the surface was investigated utilizing X-ray absorption spectroscopy and its associated linear and circular dichroisms.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmitz-Antoniak, Carolin
|0 P:(DE-Juel1)162347
|b 1
700 1 _ |a Salamon, Soma
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Trivedi, Harsh
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gao, Yanling
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nazrabi, Ahmadshah
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Landers, Joachim
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gautam, Devendraprakash
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winterer, Markus
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schmitz, Detlef
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wende, Heiko
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Shvartsman, Vladimir V.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lupascu, Doru C.
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1016/j.actamat.2015.02.032
|g Vol. 90, p. 1 - 9
|0 PERI:(DE-600)2014621-8
|p 1 - 9
|t Acta materialia
|v 90
|y 2015
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280557/files/1-s2.0-S1359645415001329-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280557
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162347
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21