000280561 001__ 280561
000280561 005__ 20210129221346.0
000280561 0247_ $$2doi$$a10.1016/j.mee.2015.05.007
000280561 0247_ $$2ISSN$$a0167-9317
000280561 0247_ $$2ISSN$$a1873-5568
000280561 0247_ $$2WOS$$aWOS:000358269600007
000280561 037__ $$aFZJ-2016-00329
000280561 082__ $$a620
000280561 1001_ $$0P:(DE-Juel1)142512$$aTırpancı, Şaban$$b0$$eCorresponding author
000280561 245__ $$aCharging effect reduction in electron beam lithography and observation of single nanopillars on highly insulating substrates
000280561 260__ $$a[S.l.] @$$bElsevier$$c2015
000280561 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452604187_1766
000280561 3367_ $$2DataCite$$aOutput Types/Journal article
000280561 3367_ $$00$$2EndNote$$aJournal Article
000280561 3367_ $$2BibTeX$$aARTICLE
000280561 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280561 3367_ $$2DRIVER$$aarticle
000280561 520__ $$aElectron beam writing and imaging of nanoscale structures on highly insulating substrates severely suffer from charging effects, which cause reduction in pattern resolution, positioning precision, and imaging quality. Conductive layers deposited above or below the resist layer can effectively reduce charge accumulation, but often give rise to contamination impairing the physical and chemical properties of functional nanostructures. Here we deal with top and bottom contacted, sub-micron-sized nanopillars made from multilayer stacks comprising ferromagnetic and non-magnetic materials for the study of current-induced magnetization dynamics. We show how the charging effects in a previously established fabrication process for single-crystalline nanopillars by H. Dassow et al. (2006) [1] can be significantly reduced by using the bottom electrode layer as charge dissipater and only isolating and disconnecting the bottom electrodes from ground after the fabrication of the delicate nanopillar structure by electron beam lithography. The modified process is successfully applied to Co2MnSi/Ag/Co2MnSi(001) multilayer stacks grown on highly insulating MgO substrates. Ellipsoidal nanopillars with a cross-section of 75 × 120 nm2 reveal 2% giant magnetoresistance and angular dependent magnetization behavior due to the magnetic anisotropy of the elliptical nanomagnets.
000280561 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000280561 588__ $$aDataset connected to CrossRef
000280561 7001_ $$0P:(DE-HGF)0$$aBürgler, Daniel E.$$b1
000280561 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b2
000280561 7001_ $$0P:(DE-HGF)0$$aRameev, Bulat$$b3
000280561 7001_ $$0P:(DE-HGF)0$$aAktaş, Bekir$$b4
000280561 773__ $$0PERI:(DE-600)1497065-x$$a10.1016/j.mee.2015.05.007$$gVol. 140, p. 33 - 37$$p33 - 37$$tMicroelectronic engineering$$v140$$x0167-9317$$y2015
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.pdf$$yRestricted
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.gif?subformat=icon$$xicon$$yRestricted
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280561 8564_ $$uhttps://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280561 909CO $$ooai:juser.fz-juelich.de:280561$$pVDB
000280561 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280561 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000280561 9141_ $$y2015
000280561 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280561 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280561 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROELECTRON ENG : 2014
000280561 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280561 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280561 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280561 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280561 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280561 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280561 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280561 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280561 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000280561 980__ $$ajournal
000280561 980__ $$aVDB
000280561 980__ $$aUNRESTRICTED
000280561 980__ $$aI:(DE-Juel1)PGI-6-20110106