001     280561
005     20210129221346.0
024 7 _ |a 10.1016/j.mee.2015.05.007
|2 doi
024 7 _ |a 0167-9317
|2 ISSN
024 7 _ |a 1873-5568
|2 ISSN
024 7 _ |a WOS:000358269600007
|2 WOS
037 _ _ |a FZJ-2016-00329
082 _ _ |a 620
100 1 _ |a Tırpancı, Şaban
|0 P:(DE-Juel1)142512
|b 0
|e Corresponding author
245 _ _ |a Charging effect reduction in electron beam lithography and observation of single nanopillars on highly insulating substrates
260 _ _ |a [S.l.] @
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452604187_1766
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Electron beam writing and imaging of nanoscale structures on highly insulating substrates severely suffer from charging effects, which cause reduction in pattern resolution, positioning precision, and imaging quality. Conductive layers deposited above or below the resist layer can effectively reduce charge accumulation, but often give rise to contamination impairing the physical and chemical properties of functional nanostructures. Here we deal with top and bottom contacted, sub-micron-sized nanopillars made from multilayer stacks comprising ferromagnetic and non-magnetic materials for the study of current-induced magnetization dynamics. We show how the charging effects in a previously established fabrication process for single-crystalline nanopillars by H. Dassow et al. (2006) [1] can be significantly reduced by using the bottom electrode layer as charge dissipater and only isolating and disconnecting the bottom electrodes from ground after the fabrication of the delicate nanopillar structure by electron beam lithography. The modified process is successfully applied to Co2MnSi/Ag/Co2MnSi(001) multilayer stacks grown on highly insulating MgO substrates. Ellipsoidal nanopillars with a cross-section of 75 × 120 nm2 reveal 2% giant magnetoresistance and angular dependent magnetization behavior due to the magnetic anisotropy of the elliptical nanomagnets.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bürgler, Daniel E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 2
700 1 _ |a Rameev, Bulat
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aktaş, Bekir
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.mee.2015.05.007
|g Vol. 140, p. 33 - 37
|0 PERI:(DE-600)1497065-x
|p 33 - 37
|t Microelectronic engineering
|v 140
|y 2015
|x 0167-9317
856 4 _ |u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280561/files/1-s2.0-S016793171530006X-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280561
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROELECTRON ENG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21