000280592 001__ 280592
000280592 005__ 20210129221348.0
000280592 037__ $$aFZJ-2016-00360
000280592 041__ $$aEnglish
000280592 1001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b0$$eCorresponding author$$ufzj
000280592 1112_ $$aSociety of Experimental Biology annual main meeting 2015$$cPrague$$d2015-06-30 - 2015-07-03$$gSEB$$wCzech Republic
000280592 245__ $$aInvestigating belowground dynamics with Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)
000280592 260__ $$c2015
000280592 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1452755887_10300$$xInvited
000280592 3367_ $$033$$2EndNote$$aConference Paper
000280592 3367_ $$2DataCite$$aOther
000280592 3367_ $$2ORCID$$aLECTURE_SPEECH
000280592 3367_ $$2DRIVER$$aconferenceObject
000280592 3367_ $$2BibTeX$$aINPROCEEDINGS
000280592 520__ $$aInvestigating belowground dynamics with Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)Ralf Metzner*, Dagmar van Dusschoten and Siegfried JahnkeInstitute of Bio- and Geosciences IBG 2: Plant Sciences, Forschungszentrum Jülich GmbH, Germany*Presenting author: r.metzner@fz-juelich.deThe development of a root system adequate for supplying a plant with water and nutrients under dynamic growing conditions is critical for survival, performance and yield. Particularly for “Root Crops” where the storage organs are developing belowground, the dynamics of the carbon storage of the roots are also highly relevant. The opaque nature of soil prevents direct observation and while a number of approaches for observing 2D root development such as rhizotrons have been applied successfully, roots naturally develop in interaction with the 3D soil environment and form themselves complex 3D structures. Therefore the ability to deep-phenotype the 3D structure and function of roots and other belowground structures non-invasively yields a high potential for gaining new insights into root development, its regulation and responses to stress. Here we present two approaches that allow this kind of investigation: Magnetic resonance imaging (MRI) allows for visualization and quantification of root system architecture traits in soil such as root length and mass, but also of internal structures of storage organs. Positron emission tomography (PET) using short-lived radiotracer 11C provides additional 3D imaging of the photoassimilate distribution. Photoassimilate flow characteristics can be extracted from these data with a model-based analysis. We show here application of both techniques for repeated visualization and quantification of root system architecture, anatomy and photoassimilate allocation of a number of species and developmental stages, including barley, pea and sugar beet.
000280592 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000280592 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b1$$ufzj
000280592 7001_ $$0P:(DE-Juel1)129336$$aJahnke, Siegfried$$b2$$ufzj
000280592 909CO $$ooai:juser.fz-juelich.de:280592$$pVDB
000280592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129336$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280592 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000280592 9141_ $$y2015
000280592 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280592 920__ $$lyes
000280592 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000280592 980__ $$aconf
000280592 980__ $$aVDB
000280592 980__ $$aUNRESTRICTED
000280592 980__ $$aI:(DE-Juel1)IBG-2-20101118