000280596 001__ 280596
000280596 005__ 20210129221349.0
000280596 0247_ $$2doi$$a10.1093/treephys/tpv020
000280596 0247_ $$2ISSN$$a0829-318X
000280596 0247_ $$2ISSN$$a1758-4469
000280596 0247_ $$2WOS$$aWOS:000354778300005
000280596 0247_ $$2altmetric$$aaltmetric:3813132
000280596 0247_ $$2pmid$$apmid:25787331
000280596 0247_ $$2Handle$$a2128/26557
000280596 037__ $$aFZJ-2016-00364
000280596 041__ $$aEnglish
000280596 082__ $$a630
000280596 1001_ $$0P:(DE-HGF)0$$aLiesche, J.$$b0$$eCorresponding author
000280596 245__ $$aSlower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance
000280596 260__ $$aVictoria, BC$$bHeron$$c2015
000280596 3367_ $$2DRIVER$$aarticle
000280596 3367_ $$2DataCite$$aOutput Types/Journal article
000280596 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1608046070_18852
000280596 3367_ $$2BibTeX$$aARTICLE
000280596 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280596 3367_ $$00$$2EndNote$$aJournal Article
000280596 520__ $$aIn trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h−1 for angiosperm trees and 22 cm h−1 for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.
000280596 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000280596 588__ $$aDataset connected to CrossRef
000280596 7001_ $$0P:(DE-Juel1)129422$$aWindt, C.$$b1$$ufzj
000280596 7001_ $$0P:(DE-HGF)0$$aBohr, T.$$b2
000280596 7001_ $$0P:(DE-Juel1)166217$$aSchulz, A.$$b3$$ufzj
000280596 7001_ $$0P:(DE-HGF)0$$aJensen, K. H.$$b4
000280596 773__ $$0PERI:(DE-600)1473475-8$$a10.1093/treephys/tpv020$$gVol. 35, no. 4, p. 376 - 386$$n4$$p376 - 386$$tTree physiology$$v35$$x1758-4469$$y2015
000280596 8564_ $$uhttps://juser.fz-juelich.de/record/280596/files/tpv020.pdf$$yOpenAccess
000280596 909CO $$ooai:juser.fz-juelich.de:280596$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000280596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280596 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166217$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280596 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000280596 9141_ $$y2015
000280596 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280596 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280596 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280596 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTREE PHYSIOL : 2014
000280596 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280596 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280596 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280596 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280596 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000280596 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280596 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000280596 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280596 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280596 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280596 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280596 920__ $$lyes
000280596 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000280596 980__ $$ajournal
000280596 980__ $$aVDB
000280596 980__ $$aUNRESTRICTED
000280596 980__ $$aI:(DE-Juel1)IBG-2-20101118
000280596 9801_ $$aFullTexts