000280599 001__ 280599
000280599 005__ 20210129221349.0
000280599 0247_ $$2doi$$a10.1111/j.1365-3040.2005.01396.x
000280599 0247_ $$2ISSN$$a0140-7791
000280599 0247_ $$2ISSN$$a1365-3040
000280599 0247_ $$2WOS$$aWOS:000233808100002
000280599 037__ $$aFZJ-2016-00367
000280599 041__ $$aEnglish
000280599 082__ $$a570
000280599 1001_ $$0P:(DE-HGF)0$$aPEUKE, ANDREAS D.$$b0$$eCorresponding author
000280599 245__ $$aEffects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited?
000280599 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2006
000280599 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452756382_10303
000280599 3367_ $$2DataCite$$aOutput Types/Journal article
000280599 3367_ $$00$$2EndNote$$aJournal Article
000280599 3367_ $$2BibTeX$$aARTICLE
000280599 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280599 3367_ $$2DRIVER$$aarticle
000280599 520__ $$aThe effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloem was investigated by NMR imaging. Cold girdling reduced the concentration of sucrose but not that of inorganic solutes or amino acids in phloem saps. The possibility that cold treatment inhibited the retrieval of sucrose into the phloem, following leaching from the sieve tubes along a chemical gradient is discussed. Leaching of other solutes did not occur, as a result of missing promoting gradients in stem tissue. Following 3 d of cold girdling, sugar concentration increased and starch was synthesized and accumulated in stem tissue above the cold girdling region and along the cold-treated phloem pathway due to leaching of sugars from the phloem. Only in the very first period of cold girdling (< 15–30 min) was mass flow inhibited, but recovered in the rest of cold treatment period to values similar to the control period before and the recovery period after the cold treatment. It is concluded that cold treatment affected phloem transport through two independent and reversible processes: (1) a permanent leaching of sucrose from the phloem stem without normal retrieval during cold treatment, and (2) a short-term inhibition of mass flow at the beginning of cold treatment, possibly involving P proteins. Possible further mechanisms for reversible inhibition of water flow are discussed.
000280599 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000280599 588__ $$aDataset connected to CrossRef
000280599 7001_ $$0P:(DE-Juel1)129422$$aWINDT, CAREL$$b1$$ufzj
000280599 7001_ $$0P:(DE-HGF)0$$aVAN AS, HENK$$b2
000280599 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2005.01396.x$$gVol. 29, no. 1, p. 15 - 25$$n1$$p15 - 25$$tPlant, cell & environment$$v29$$x1365-3040$$y2006
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.pdf$$yRestricted
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.gif?subformat=icon$$xicon$$yRestricted
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280599 8564_ $$uhttps://juser.fz-juelich.de/record/280599/files/PEUKE_et_al-2006-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280599 909CO $$ooai:juser.fz-juelich.de:280599$$pVDB
000280599 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280599 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000280599 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280599 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280599 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2014
000280599 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2014
000280599 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280599 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280599 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280599 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280599 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000280599 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280599 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280599 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280599 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280599 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280599 920__ $$lyes
000280599 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000280599 980__ $$ajournal
000280599 980__ $$aVDB
000280599 980__ $$aUNRESTRICTED
000280599 980__ $$aI:(DE-Juel1)IBG-2-20101118