000280606 001__ 280606
000280606 005__ 20210129221350.0
000280606 0247_ $$2doi$$a10.1111/j.1365-3040.2006.01544.x
000280606 0247_ $$2ISSN$$a0140-7791
000280606 0247_ $$2ISSN$$a1365-3040
000280606 0247_ $$2WOS$$aWOS:000239370700004
000280606 037__ $$aFZJ-2016-00374
000280606 041__ $$aEnglish
000280606 082__ $$a570
000280606 1001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b0
000280606 245__ $$aMRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco
000280606 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2006
000280606 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452757122_10302
000280606 3367_ $$2DataCite$$aOutput Types/Journal article
000280606 3367_ $$00$$2EndNote$$aJournal Article
000280606 3367_ $$2BibTeX$$aARTICLE
000280606 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280606 3367_ $$2DRIVER$$aarticle
000280606 520__ $$aWe used dedicated magnetic resonance imaging (MRI) equipment and methods to study phloem and xylem transport in large potted plants. Quantitative flow profiles were obtained on a per-pixel basis, giving parameter maps of velocity, flow-conducting area and volume flow (flux). The diurnal xylem and phloem flow dynamics in poplar, castor bean, tomato and tobacco were compared. In poplar, clear diurnal differences in phloem flow profile were found, but phloem flux remained constant. In tomato, only small diurnal differences in flow profile were observed. In castor bean and tobacco, phloem flow remained unchanged. In all plants, xylem flow profiles showed large diurnal variation. Decreases in xylem flux were accompanied by a decrease in velocity and flow-conducting area. The diurnal changes in flow-conducting area of phloem and xylem could not be explained by pressure-dependent elastic changes in conduit diameter. The phloem to xylem flux ratio reflects what fraction of xylem water is used for phloem transport (Munch's counterflow). This ratio was large at night for poplar (0.19), castor bean (0.37) and tobacco (0.55), but low in tomato (0.04). The differences in phloem flow velocity between the four species, as well as within a diurnal cycle, were remarkably small (0.25-0.40 mm s(-1)). We hypothesize that upper and lower bounds for phloem flow velocity may exist: when phloem flow velocity is too high, parietal organelles may be stripped away from sieve tube walls; when sap flow is too slow or is highly variable, phloem-borne signalling could become unpredictable.
000280606 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000280606 588__ $$aDataset connected to CrossRef
000280606 7001_ $$0P:(DE-HGF)0$$aVERGELDT, FRANK J.$$b1
000280606 7001_ $$0P:(DE-HGF)0$$aDE JAGER, P. ADRIE$$b2
000280606 7001_ $$0P:(DE-HGF)0$$aVAN AS, HENK$$b3$$eCorresponding author
000280606 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2006.01544.x$$gVol. 29, no. 9, p. 1715 - 1729$$n9$$p1715 - 1729$$tPlant, cell & environment$$v29$$x1365-3040$$y2006
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.pdf$$yRestricted
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.gif?subformat=icon$$xicon$$yRestricted
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280606 8564_ $$uhttps://juser.fz-juelich.de/record/280606/files/WINDT_et_al-2006-Plant%2C_Cell_%26_Environment.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280606 909CO $$ooai:juser.fz-juelich.de:280606$$pVDB
000280606 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280606 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000280606 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280606 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280606 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2014
000280606 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2014
000280606 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280606 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280606 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280606 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280606 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000280606 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280606 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280606 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280606 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280606 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280606 920__ $$lyes
000280606 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000280606 980__ $$ajournal
000280606 980__ $$aVDB
000280606 980__ $$aUNRESTRICTED
000280606 980__ $$aI:(DE-Juel1)IBG-2-20101118