001     280635
005     20240711085550.0
024 7 _ |a 10.1016/j.memsci.2015.12.029
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a WOS:000369494100001
|2 WOS
024 7 _ |a altmetric:21218018
|2 altmetric
037 _ _ |a FZJ-2016-00400
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Marcano, D.
|0 P:(DE-Juel1)159408
|b 0
|e Corresponding author
245 _ _ |a Controlling the stress state of La1−xSrxCoyFe1−yO3−δ oxygen transport membranes on porous metallic supports deposited by plasma spray–physical vapor process
260 _ _ |a New York, NY [u.a.]
|c 2016
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452861180_31357
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF), deposited on a metallic porous support by plasma spray–physical vapor deposition (PS–PVD) is a promising candidate for oxygen-permeation membranes. However, after O2 permeation tests, membranes show vertical cracks leading to leakage during the tests. In the present work, one important feature leading to crack formation was identified. More specifically; membrane residual stress changes during thermal loading were found to be related to a phase transformation in the support. In order to improve the performance of the membranes, the metallic support was optimized by applying an appropriate heat treatment. The observed oxygen fluxes during permeation tests had infinite selectivity and were amongst the highest fluxes ever measured for LSCF membranes in the thickness range of 30 μm, supported by LSCF porous substrates.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 1
|u fzj
700 1 _ |a Sohn, Y. J.
|0 P:(DE-Juel1)159368
|b 2
|u fzj
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 3
700 1 _ |a Garcia-Fayos, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Serra, J. M.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.memsci.2015.12.029
|g Vol. 503, p. 1 - 7
|0 PERI:(DE-600)1491419-0
|p 1 - 7
|t Journal of membrane science
|v 503
|y 2016
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280635/files/1-s2.0-S037673881530380X-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280635
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159408
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MEMBRANE SCI : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MEMBRANE SCI : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21