001     280639
005     20240712084501.0
024 7 _ |a 10.1002/pssr.201510376
|2 doi
024 7 _ |a 1862-6254
|2 ISSN
024 7 _ |a 1862-6270
|2 ISSN
024 7 _ |a WOS:000373119300005
|2 WOS
037 _ _ |a FZJ-2016-00404
082 _ _ |a 530
100 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 0
|e Corresponding author
245 _ _ |a Mechanism for crystalline Si surface passivation by the combination of SiO$_{2}$ tunnel oxide and µc-SiC:H thin film
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1461583177_12066
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a This work demonstrates that the combination of a wet-chemically grown SiO2 tunnel oxide with a highly-doped microcrystalline silicon carbide layer grown by hot-wire chemical vapor deposition yields an excellent surface passivation for phosphorous-doped crystalline silicon (c-Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c-Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous-doped polycrystalline-Si (pc-Si)/SiO2 stack. In both cases, field effect passivation by the n-doping of either the µc-SiC:H or the pc-Si is effective. Hydrogen passivation during µc-SiC:H growth plays an important role for the µc-SiC:H/SiO2 combination, whereas phosphorous in-diffusion into the SiO2 and the c-Si is operative for the surface passivation via the Pc-Si/SiO2 stack. The high transparency and conductivity of the µc-SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c-Si surface passivation quality are advantageous features of µc-SiC:H/SiO2 that can be beneficial for c-Si solar cells.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pomaska, Manuel
|0 P:(DE-Juel1)162141
|b 1
700 1 _ |a Singh, Aryak
|0 P:(DE-Juel1)164370
|b 2
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 3
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 4
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 5
773 _ _ |a 10.1002/pssr.201510376
|g Vol. 9999, no. 9999, p. n/a - n/a
|0 PERI:(DE-600)2259465-6
|n 3
|p 233 – 236
|t Physica status solidi / Rapid research letters
|v 10
|y 2016
|x 1862-6254
856 4 _ |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280639/files/pssr201510376.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280639/files/pssr201510376.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280639
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162141
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164370
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)143905
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI-R : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21