| Hauptseite > Publikationsdatenbank > Mechanism for crystalline Si surface passivation by the combination of SiO$_{2}$ tunnel oxide and µc-SiC:H thin film > print |
| 001 | 280639 | ||
| 005 | 20240712084501.0 | ||
| 024 | 7 | _ | |a 10.1002/pssr.201510376 |2 doi |
| 024 | 7 | _ | |a 1862-6254 |2 ISSN |
| 024 | 7 | _ | |a 1862-6270 |2 ISSN |
| 024 | 7 | _ | |a WOS:000373119300005 |2 WOS |
| 037 | _ | _ | |a FZJ-2016-00404 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Mechanism for crystalline Si surface passivation by the combination of SiO$_{2}$ tunnel oxide and µc-SiC:H thin film |
| 260 | _ | _ | |a Weinheim |c 2016 |b Wiley-VCH |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1461583177_12066 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 520 | _ | _ | |a This work demonstrates that the combination of a wet-chemically grown SiO2 tunnel oxide with a highly-doped microcrystalline silicon carbide layer grown by hot-wire chemical vapor deposition yields an excellent surface passivation for phosphorous-doped crystalline silicon (c-Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c-Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous-doped polycrystalline-Si (pc-Si)/SiO2 stack. In both cases, field effect passivation by the n-doping of either the µc-SiC:H or the pc-Si is effective. Hydrogen passivation during µc-SiC:H growth plays an important role for the µc-SiC:H/SiO2 combination, whereas phosphorous in-diffusion into the SiO2 and the c-Si is operative for the surface passivation via the Pc-Si/SiO2 stack. The high transparency and conductivity of the µc-SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c-Si surface passivation quality are advantageous features of µc-SiC:H/SiO2 that can be beneficial for c-Si solar cells. |
| 536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Pomaska, Manuel |0 P:(DE-Juel1)162141 |b 1 |
| 700 | 1 | _ | |a Singh, Aryak |0 P:(DE-Juel1)164370 |b 2 |
| 700 | 1 | _ | |a Lentz, Florian |0 P:(DE-Juel1)130795 |b 3 |
| 700 | 1 | _ | |a Finger, Friedhelm |0 P:(DE-Juel1)130238 |b 4 |
| 700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)143905 |b 5 |
| 773 | _ | _ | |a 10.1002/pssr.201510376 |g Vol. 9999, no. 9999, p. n/a - n/a |0 PERI:(DE-600)2259465-6 |n 3 |p 233 – 236 |t Physica status solidi / Rapid research letters |v 10 |y 2016 |x 1862-6254 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.pdf |y Restricted |
| 856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.gif?subformat=icon |y Restricted |
| 856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-1440 |y Restricted |
| 856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-180 |y Restricted |
| 856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.jpg?subformat=icon-640 |y Restricted |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/280639/files/pssr201510376.pdf?subformat=pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:280639 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130233 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162141 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164370 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130795 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130238 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)143905 |
| 913 | 1 | _ | |a DE-HGF |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |2 G:(DE-HGF)POF3-100 |v Solar cells of the next generation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS STATUS SOLIDI-R : 2013 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|