000280646 001__ 280646
000280646 005__ 20240711085551.0
000280646 0247_ $$2doi$$a10.1111/jace.13931
000280646 0247_ $$2ISSN$$a0002-7820
000280646 0247_ $$2ISSN$$a1551-2916
000280646 0247_ $$2WOS$$aWOS:000368076800007
000280646 037__ $$aFZJ-2016-00411
000280646 041__ $$aEnglish
000280646 082__ $$a660
000280646 1001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b0$$eCorresponding author$$ufzj
000280646 245__ $$aEffect of Internal Current Flow During the Sintering of Zirconium Diboride by Field Assisted Sintering Technology
000280646 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2016
000280646 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452848397_31358
000280646 3367_ $$2DataCite$$aOutput Types/Journal article
000280646 3367_ $$00$$2EndNote$$aJournal Article
000280646 3367_ $$2BibTeX$$aARTICLE
000280646 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280646 3367_ $$2DRIVER$$aarticle
000280646 520__ $$aEffect of electric current on sintering behavior and microstructure evolution of zirconium diboride (ZrB2) was investigated using three different configurations of Field Assisted Sintering Technology/Spark Plasma Sintering. The current flow through the ZrB2 compact was controlled by modifying the interface between the graphite punches and the electrical conductive powder. Boron nitride discs, graphite foils or direct contact with the graphite punches were the three different interfaces used in order to deflect, conduct or promote, respectively, the current during the sintering process of the electrically conductive ZrB2 ceramics. The current flow during the sintering process triggered the elimination/reduction in B2O3, leading to faster diffusion rates at high temperatures and limiting the formation of B4C secondary phase. This allows to control the final density, grain size (from 19.6 to 43.2 μm) and secondary phase formation (from 5.95 to 11.61 vol%) as well as the electrical resistivity (from 7.7 to 9.4 μΩ·cm) of the specimens.
000280646 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000280646 588__ $$aDataset connected to CrossRef
000280646 7001_ $$0P:(DE-HGF)0$$aJähnert, Kevin$$b1
000280646 7001_ $$0P:(DE-HGF)0$$aSpeer, Kerstin$$b2
000280646 7001_ $$0P:(DE-Juel1)162509$$aLiu, Limeng$$b3
000280646 7001_ $$0P:(DE-HGF)0$$aRäthel, Jan$$b4
000280646 7001_ $$0P:(DE-HGF)0$$aKnapp, Michael$$b5
000280646 7001_ $$0P:(DE-HGF)0$$aEhrenberg, Helmut$$b6
000280646 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b7
000280646 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b8
000280646 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.13931$$gVol. 99, no. 1, p. 35 - 42$$n1$$p35 - 42$$tJournal of the American Ceramic Society$$v99$$x0002-7820$$y2016
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.pdf$$yRestricted
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.gif?subformat=icon$$xicon$$yRestricted
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280646 8564_ $$uhttps://juser.fz-juelich.de/record/280646/files/Gonzalez-Julian_et_al-2016-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280646 909CO $$ooai:juser.fz-juelich.de:280646$$pVDB
000280646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162509$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000280646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280646 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000280646 9141_ $$y2016
000280646 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280646 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280646 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2014
000280646 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280646 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280646 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280646 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280646 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280646 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280646 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280646 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280646 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280646 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000280646 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000280646 980__ $$ajournal
000280646 980__ $$aVDB
000280646 980__ $$aUNRESTRICTED
000280646 980__ $$aI:(DE-Juel1)IEK-1-20101013
000280646 980__ $$aI:(DE-82)080011_20140620
000280646 981__ $$aI:(DE-Juel1)IMD-2-20101013