000280654 001__ 280654
000280654 005__ 20210129221359.0
000280654 0247_ $$2doi$$a10.1104/pp.15.00243
000280654 0247_ $$2ISSN$$a0032-0889
000280654 0247_ $$2ISSN$$a1532-2548
000280654 0247_ $$2WOS$$aWOS:000359317400032
000280654 0247_ $$2altmetric$$aaltmetric:4239249
000280654 0247_ $$2pmid$$apmid:26134165
000280654 037__ $$aFZJ-2016-00418
000280654 041__ $$aEnglish
000280654 082__ $$a580
000280654 1001_ $$00000-0003-0973-891X$$aLätari, Kira$$b0
000280654 245__ $$aTissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves
000280654 260__ $$aRockville, Md.$$bSoc.$$c2015
000280654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453105841_16479
000280654 3367_ $$2DataCite$$aOutput Types/Journal article
000280654 3367_ $$00$$2EndNote$$aJournal Article
000280654 3367_ $$2BibTeX$$aARTICLE
000280654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280654 3367_ $$2DRIVER$$aarticle
000280654 520__ $$aAttaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. 
000280654 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000280654 588__ $$aDataset connected to CrossRef
000280654 7001_ $$00000-0002-9941-5550$$aWüst, Florian$$b1
000280654 7001_ $$0P:(DE-HGF)0$$aHübner, Michaela$$b2
000280654 7001_ $$00000-0002-8529-4161$$aSchaub, Patrick$$b3
000280654 7001_ $$00000-0003-4961-652X$$aBeisel, Kim Gabriele$$b4
000280654 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, Shizue$$b5$$ufzj
000280654 7001_ $$0P:(DE-HGF)0$$aBeyer, Peter$$b6
000280654 7001_ $$00000-0002-2865-2743$$aWelsch, Ralf$$b7$$eCorresponding author
000280654 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.15.00243$$gVol. 168, no. 4, p. 1550 - 1562$$n4$$p1550 - 1562$$tPlant physiology$$v168$$x1532-2548$$y2015
000280654 8564_ $$uhttps://juser.fz-juelich.de/record/280654/files/Plant%20Physiol.-2015-L%C3%A4tari-1550-62.pdf$$yRestricted
000280654 8564_ $$uhttps://juser.fz-juelich.de/record/280654/files/Plant%20Physiol.-2015-L%C3%A4tari-1550-62.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280654 909CO $$ooai:juser.fz-juelich.de:280654$$pVDB
000280654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129358$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280654 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000280654 9141_ $$y2015
000280654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280654 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2014
000280654 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2014
000280654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280654 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280654 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280654 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280654 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000280654 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280654 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000280654 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280654 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280654 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000280654 980__ $$ajournal
000280654 980__ $$aVDB
000280654 980__ $$aUNRESTRICTED
000280654 980__ $$aI:(DE-Juel1)IBG-2-20101118