001     280654
005     20210129221359.0
024 7 _ |a 10.1104/pp.15.00243
|2 doi
024 7 _ |a 0032-0889
|2 ISSN
024 7 _ |a 1532-2548
|2 ISSN
024 7 _ |a WOS:000359317400032
|2 WOS
024 7 _ |a altmetric:4239249
|2 altmetric
024 7 _ |a pmid:26134165
|2 pmid
037 _ _ |a FZJ-2016-00418
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Lätari, Kira
|0 0000-0003-0973-891X
|b 0
245 _ _ |a Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves
260 _ _ |a Rockville, Md.
|c 2015
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453105841_16479
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wüst, Florian
|0 0000-0002-9941-5550
|b 1
700 1 _ |a Hübner, Michaela
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schaub, Patrick
|0 0000-0002-8529-4161
|b 3
700 1 _ |a Beisel, Kim Gabriele
|0 0000-0003-4961-652X
|b 4
700 1 _ |a Matsubara, Shizue
|0 P:(DE-Juel1)129358
|b 5
|u fzj
700 1 _ |a Beyer, Peter
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Welsch, Ralf
|0 0000-0002-2865-2743
|b 7
|e Corresponding author
773 _ _ |a 10.1104/pp.15.00243
|g Vol. 168, no. 4, p. 1550 - 1562
|0 PERI:(DE-600)2004346-6
|n 4
|p 1550 - 1562
|t Plant physiology
|v 168
|y 2015
|x 1532-2548
856 4 _ |u https://juser.fz-juelich.de/record/280654/files/Plant%20Physiol.-2015-L%C3%A4tari-1550-62.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280654/files/Plant%20Physiol.-2015-L%C3%A4tari-1550-62.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280654
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129358
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT PHYSIOL : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT PHYSIOL : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21