000280687 001__ 280687
000280687 005__ 20240711085553.0
000280687 0247_ $$2doi$$a10.1016/j.mechmat.2015.11.002
000280687 0247_ $$2ISSN$$a0167-6636
000280687 0247_ $$2ISSN$$a1872-7743
000280687 0247_ $$2WOS$$aWOS:000368748900015
000280687 037__ $$aFZJ-2016-00444
000280687 041__ $$aEnglish
000280687 082__ $$a550
000280687 1001_ $$0P:(DE-Juel1)144898$$aNordhorn, Christian$$b0$$eCorresponding author
000280687 245__ $$aProbabilistic lifetime model for atmospherically plasma sprayed thermal barrier coating systems
000280687 260__ $$aAmsterdam$$bElsevier$$c2016
000280687 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452870101_31358
000280687 3367_ $$2DataCite$$aOutput Types/Journal article
000280687 3367_ $$00$$2EndNote$$aJournal Article
000280687 3367_ $$2BibTeX$$aARTICLE
000280687 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280687 3367_ $$2DRIVER$$aarticle
000280687 520__ $$aCalculations of atmospherically plasma sprayed thermal barrier coating durability were facilitated by the development of a numerical lifetime model including probabilistic fracture mechanical analyses of thermally induced topcoat stress field evolutions. The stress distributions were determined in finite element analyses taking into account oxide scale growth and topcoat sintering as transient degradation effects. The influence of interface microstructure was investigated by implementing two different interface approximation functions. Subsequent fracture mechanical analyses of subcritical crack growth were performed at numerous different and permanently assigned abstract crack positions. A comparison of the transient energy release rate to its critical value, which depends on crack length and therefore position, results in statistical distributions of system lifetime as a function of simulated thermal cycling conditions. The model was calibrated by presetting an experimental lifetime distribution which was determined in thermal cycling experiments performed at a burner rig facility. The associated cycle-dependent calibration parameter reflects the effect of fracture toughness increase for increasing crack lengths. Experimental reference values for system lifetime were found to be reproduced by the lifetime model. The stress field inversion directly correlated to oxide scale growth rate was identified as the main failure mechanism. The expectation values and standard deviations of the calculated lifetime distributions were found to be in accordance to the experimentally obtained lifetime data and the data scattering typically observed in thermal cycling.
000280687 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000280687 588__ $$aDataset connected to CrossRef
000280687 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b1$$ufzj
000280687 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel E.$$b2$$ufzj
000280687 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3
000280687 773__ $$0PERI:(DE-600)2013735-7$$a10.1016/j.mechmat.2015.11.002$$gVol. 93, p. 199 - 208$$p199 - 208$$tMechanics of materials$$v93$$x0167-6636$$y2016
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.pdf$$yRestricted
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.gif?subformat=icon$$xicon$$yRestricted
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280687 8564_ $$uhttps://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280687 909CO $$ooai:juser.fz-juelich.de:280687$$pVDB
000280687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280687 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000280687 9141_ $$y2016
000280687 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280687 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280687 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMECH MATER : 2014
000280687 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280687 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280687 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280687 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280687 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280687 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280687 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280687 920__ $$lyes
000280687 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000280687 980__ $$ajournal
000280687 980__ $$aVDB
000280687 980__ $$aUNRESTRICTED
000280687 980__ $$aI:(DE-Juel1)IEK-1-20101013
000280687 981__ $$aI:(DE-Juel1)IMD-2-20101013