001     280687
005     20240711085553.0
024 7 _ |a 10.1016/j.mechmat.2015.11.002
|2 doi
024 7 _ |a 0167-6636
|2 ISSN
024 7 _ |a 1872-7743
|2 ISSN
024 7 _ |a WOS:000368748900015
|2 WOS
037 _ _ |a FZJ-2016-00444
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Nordhorn, Christian
|0 P:(DE-Juel1)144898
|b 0
|e Corresponding author
245 _ _ |a Probabilistic lifetime model for atmospherically plasma sprayed thermal barrier coating systems
260 _ _ |a Amsterdam
|c 2016
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1452870101_31358
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Calculations of atmospherically plasma sprayed thermal barrier coating durability were facilitated by the development of a numerical lifetime model including probabilistic fracture mechanical analyses of thermally induced topcoat stress field evolutions. The stress distributions were determined in finite element analyses taking into account oxide scale growth and topcoat sintering as transient degradation effects. The influence of interface microstructure was investigated by implementing two different interface approximation functions. Subsequent fracture mechanical analyses of subcritical crack growth were performed at numerous different and permanently assigned abstract crack positions. A comparison of the transient energy release rate to its critical value, which depends on crack length and therefore position, results in statistical distributions of system lifetime as a function of simulated thermal cycling conditions. The model was calibrated by presetting an experimental lifetime distribution which was determined in thermal cycling experiments performed at a burner rig facility. The associated cycle-dependent calibration parameter reflects the effect of fracture toughness increase for increasing crack lengths. Experimental reference values for system lifetime were found to be reproduced by the lifetime model. The stress field inversion directly correlated to oxide scale growth rate was identified as the main failure mechanism. The expectation values and standard deviations of the calculated lifetime distributions were found to be in accordance to the experimentally obtained lifetime data and the data scattering typically observed in thermal cycling.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Mack, Daniel E.
|0 P:(DE-Juel1)129630
|b 2
|u fzj
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 3
773 _ _ |a 10.1016/j.mechmat.2015.11.002
|g Vol. 93, p. 199 - 208
|0 PERI:(DE-600)2013735-7
|p 199 - 208
|t Mechanics of materials
|v 93
|y 2016
|x 0167-6636
856 4 _ |u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280687/files/1-s2.0-S0167663615002306-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280687
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MECH MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21