001     280706
005     20240712084455.0
024 7 _ |a 10.1016/j.surfcoat.2015.09.016
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000376834700018
|2 WOS
037 _ _ |a FZJ-2016-00463
082 _ _ |a 620
100 1 _ |a Richter, Alexei
|0 P:(DE-Juel1)162140
|b 0
|e Corresponding author
245 _ _ |a Nano-composite microstructure model for the classification of hydrogenated nanocrystalline silicon oxide thin films
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1463985029_8466
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The unique microstructure of nanocrystalline silicon oxide (nc-SiOX:H) thin films results in excellent optoelectronic properties that can be tuned in a wide range to fulfill the requirements of the specific application. For photovoltaic applications, this material is used as doped layers in silicon heterojunction solar cells and intermediate reflectors in multijunction thin-film solar cell. In this paper, we present a microstructure model based on a large number of n- and p-doped nc-SiOX:H films that were deposited under various deposition pressures, plasma powers, plasma frequencies and gas mixtures. This model is meant to provide guidelines for the systematic classification of the complex material system nc-SiOX:H by establishing a link between the structure of the deposited films and the optoelectronic performance of nc-SiOX:H. Based on this model, the deposition of nc-SiOX:H films can be divided into four characteristic regions: (i) fully amorphous region, (ii) onset of nc-Si formation, (iii) oxygen and nc-Si enrichment region, and (iv) deterioration of nc-Si. According to our microstructure model, an optimal phase composition with respect to the optoelectronic performance can be achieved with a high amount of highly conductive nc-Si percolation paths embedded in an oxygen rich a-SiOX:H matrix.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Lei
|0 P:(DE-Juel1)159406
|b 1
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 2
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 3
773 _ _ |a 10.1016/j.surfcoat.2015.09.016
|g p. S0257897215302541
|0 PERI:(DE-600)1502240-7
|p 119–124
|t Surface and coatings technology
|v 295
|y 2016
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/280706/files/1-s2.0-S0257897215302541-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:280706
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162140
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21