000280723 001__ 280723
000280723 005__ 20210129221410.0
000280723 0247_ $$2doi$$a10.1371/journal.pone.0130289
000280723 0247_ $$2Handle$$a2128/9696
000280723 0247_ $$2WOS$$aWOS:000358157600033
000280723 0247_ $$2altmetric$$aaltmetric:6404434
000280723 0247_ $$2pmid$$apmid:26147762
000280723 037__ $$aFZJ-2016-00480
000280723 041__ $$aEnglish
000280723 082__ $$a500
000280723 1001_ $$0P:(DE-HGF)0$$aRathi, P. C.$$b0
000280723 245__ $$aStructural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis
000280723 260__ $$aLawrence, Kan.$$bPLoS$$c2015
000280723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452869473_31359
000280723 3367_ $$2DataCite$$aOutput Types/Journal article
000280723 3367_ $$00$$2EndNote$$aJournal Article
000280723 3367_ $$2BibTeX$$aARTICLE
000280723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280723 3367_ $$2DRIVER$$aarticle
000280723 520__ $$aUnderstanding the origin of thermostability is of fundamental importance in protein biochemistry. Opposing views on increased or decreased structural rigidity of the folded state have been put forward in this context. They have been related to differences in the temporal resolution of experiments and computations that probe atomic mobility. Here, we find a significant (p = 0.004) and fair (R2 = 0.46) correlation between the structural rigidity of a well-characterized set of 16 mutants of lipase A from Bacillus subtilis (BsLipA) and their thermodynamic thermostability. We apply the rigidity theory-based Constraint Network Analysis (CNA) approach, analyzing directly and in a time-independent manner the statics of the BsLipA mutants. We carefully validate the CNA results on macroscopic and microscopic experimental observables and probe for their sensitivity with respect to input structures. Furthermore, we introduce a robust, local stability measure for predicting thermodynamic thermostability. Our results complement work that showed for pairs of homologous proteins that raising the structural stability is the most common way to obtain a higher thermostability. Furthermore, they demonstrate that related series of mutants with only a small number of mutations can be successfully analyzed by CNA, which suggests that CNA can be applied prospectively in rational protein design aimed at higher thermodynamic thermostability.
000280723 536__ $$0G:(DE-HGF)POF2-89581$$a89581 - Biotechnology (POF2-89581)$$cPOF2-89581$$fPOF II T$$x0
000280723 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b1
000280723 7001_ $$0P:(DE-HGF)0$$aGohlke, H.$$b2$$eCorresponding author
000280723 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0130289$$pe0130289$$tPLoS one$$v10$$x1932-6203$$y2015
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.pdf$$yOpenAccess
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.gif?subformat=icon$$xicon$$yOpenAccess
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280723 8564_ $$uhttps://juser.fz-juelich.de/record/280723/files/journal.pone.0130289.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280723 909CO $$ooai:juser.fz-juelich.de:280723$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280723 9141_ $$y2015
000280723 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280723 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280723 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280723 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000280723 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2014
000280723 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280723 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280723 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280723 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280723 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280723 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280723 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280723 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280723 9131_ $$0G:(DE-HGF)POF2-89581$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vBiotechnology$$x0
000280723 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000280723 980__ $$ajournal
000280723 980__ $$aVDB
000280723 980__ $$aUNRESTRICTED
000280723 980__ $$aI:(DE-Juel1)IMET-20090612
000280723 9801_ $$aUNRESTRICTED
000280723 9801_ $$aFullTexts