000280724 001__ 280724 000280724 005__ 20240711085555.0 000280724 0247_ $$2doi$$a10.1016/j.matchemphys.2014.10.052 000280724 0247_ $$2ISSN$$a0254-0584 000280724 0247_ $$2ISSN$$a1879-3312 000280724 0247_ $$2WOS$$aWOS:000347576900070 000280724 037__ $$aFZJ-2016-00481 000280724 041__ $$aEnglish 000280724 082__ $$a540 000280724 1001_ $$0P:(DE-HGF)0$$aZhong, Lianbing$$b0$$eCorresponding author 000280724 245__ $$aTransient liquid phase sintering of tantalum carbide ceramics by using silicon as the sintering aid and its effects on microstructure and mechanical properties 000280724 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2015 000280724 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453108465_16478 000280724 3367_ $$2DataCite$$aOutput Types/Journal article 000280724 3367_ $$00$$2EndNote$$aJournal Article 000280724 3367_ $$2BibTeX$$aARTICLE 000280724 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000280724 3367_ $$2DRIVER$$aarticle 000280724 520__ $$aTantalum carbide composites with 0.76–8.85 wt.% elemental silicon as a sintering aid were fabricated by spark plasma sintering (SPS) at 1700 °C and 30 MPa for 5 min. The transient-liquid-phase sintering behavior, the microstructures and the mechanical properties of the tantalum carbide composites were investigated. Oxide impurities present on the surfaces of the tantalum carbide particles were eliminated by reactions with the elemental silicon in a temperature range from 1271 °C to 1503 °C to benefit densification. Then the silicon melted at its melting point temperature of 1413 °C to facilitate rearrangement of the tantalum carbide particles. By the end of the densification, the elemental silicon transformed into more refractory TaSi2 and SiC in the consolidated ceramics by reactions with the tantalum carbide at temperatures lower than 1773 °C. Both TaSi2 and SiC particles improved densification by physically pinning growth of the tantalum carbide grains. Further densification was resulted from creep flow of the silicides after brittle-to-ductile transformation of the silicides at temperatures <1650 °C. Due to the good effects of using elemental silicon as the sintering aid, all the compositions reached densities >96.7% theoretical. The average grain sizes in the consolidated materials decreased with the silicon addition from about 19 μm in the 0.76 wt.% Si composition to about 9 μm in the 8.85 wt.% Si composition. A good flexural strength up to ∼709 MPa was reached in the 8.85 wt.% Si material due to full density and fine microstructure. 000280724 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0 000280724 588__ $$aDataset connected to CrossRef 000280724 7001_ $$0P:(DE-Juel1)162509$$aLiu, Limeng$$b1$$eCorresponding author 000280724 7001_ $$0P:(DE-HGF)0$$aWorsch, Christian$$b2 000280724 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b3 000280724 7001_ $$0P:(DE-HGF)0$$aSpringer, André$$b4 000280724 7001_ $$0P:(DE-HGF)0$$aYe, Feng$$b5 000280724 773__ $$0PERI:(DE-600)1491959-x$$a10.1016/j.matchemphys.2014.10.052$$gVol. 149-150, p. 505 - 511$$p505 - 511$$tMaterials chemistry and physics$$v149-150$$x0254-0584$$y2015 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.pdf$$yRestricted 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.gif?subformat=icon$$xicon$$yRestricted 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000280724 8564_ $$uhttps://juser.fz-juelich.de/record/280724/files/1-s2.0-S0254058414007032-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000280724 909CO $$ooai:juser.fz-juelich.de:280724$$pVDB 000280724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162509$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000280724 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000280724 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000280724 9141_ $$y2015 000280724 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000280724 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000280724 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER CHEM PHYS : 2014 000280724 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000280724 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000280724 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000280724 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000280724 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000280724 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000280724 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000280724 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000280724 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000280724 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000280724 980__ $$ajournal 000280724 980__ $$aVDB 000280724 980__ $$aUNRESTRICTED 000280724 980__ $$aI:(DE-Juel1)IEK-1-20101013 000280724 981__ $$aI:(DE-Juel1)IMD-2-20101013