000280732 001__ 280732
000280732 005__ 20210129221413.0
000280732 0247_ $$2doi$$a10.1186/s12934-015-0348-8
000280732 0247_ $$2Handle$$a2128/9709
000280732 0247_ $$2WOS$$aWOS:000362283400004
000280732 037__ $$aFZJ-2016-00489
000280732 041__ $$aEnglish
000280732 082__ $$a610
000280732 1001_ $$0P:(DE-HGF)0$$aRahmen, N.$$b0
000280732 245__ $$aA particular silent codon exchange in a recombinant gene greatly influences host cell metabolic activity
000280732 260__ $$aLondon$$bBiomed Central$$c2015
000280732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453123390_16481
000280732 3367_ $$2DataCite$$aOutput Types/Journal article
000280732 3367_ $$00$$2EndNote$$aJournal Article
000280732 3367_ $$2BibTeX$$aARTICLE
000280732 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280732 3367_ $$2DRIVER$$aarticle
000280732 520__ $$aBackgroundRecombinant protein production using Escherichia coli as expression host is highly efficient, however, it also induces strong host cell metabolic burden. Energy and biomass precursors are withdrawn from the host’s metabolism as they are required for plasmid replication, heterologous gene expression and protein production. Rare codons in a heterologous gene may be a further drawback. This study aims to investigate the influence of particular silent codon exchanges within a heterologous gene on host cell metabolic activity. Silent mutations were introduced into the coding sequence of a model protein to introduce all synonymous arginine or leucine codons at two randomly defined positions, as well as substitutions leading to identical amino acid exchanges with different synonymous codons. The respective E. coli clones were compared during cultivation in a mineral autoinduction medium using specialized online and offline measuring techniques to quantitatively analyze effects on respiration, biomass and protein production, as well as on carbon source consumption, plasmid copy number, intracellular nucleobases and mRNA content of each clone.ResultsHost stain metabolic burden correlates with recombinant protein production. Upon heterologous gene expression, tremendous differences in respiration, biomass and protein production were observed. According to their different respiration activity the E. coli clones could be classified into two groups, Type A and Type B. Type A clones tended to higher product formation, Type B clones showed stronger biomass formation. Whereas codon usage and intracellular nucleobases had no influence on the Type-A–Type-B-behavior, plasmid copy number, mRNA content and carbon source consumption strongly differed between the two groups.ConclusionsParticular silent codon exchanges in a heterologous gene sequence led to differences in initial growth of Type A and Type B clones. Thus, the biomass concentration at the time point of induction varied. In consequence, not only plasmid copy number and expression levels differed between the two groups, but also the kinetics of lactose and glycerol consumption. Even though the underlying molecular mechanisms are not yet identified we observed the astonishing phenomenon that particular silent codon exchanges within a heterologous gene tremendously affect host cell metabolism and recombinant protein production. This could have great impact on codon optimization of heterologous genes, screening procedures for improved variants, and biotechnological protein production processes.
000280732 536__ $$0G:(DE-HGF)POF2-89581$$a89581 - Biotechnology (POF2-89581)$$cPOF2-89581$$fPOF II T$$x0
000280732 7001_ $$0P:(DE-HGF)0$$aSchlupp, C. D.$$b1
000280732 7001_ $$0P:(DE-HGF)0$$aMitsunaga, H.$$b2
000280732 7001_ $$0P:(DE-Juel1)143642$$aFulton, Alexander$$b3
000280732 7001_ $$0P:(DE-HGF)0$$aAryani, T.$$b4
000280732 7001_ $$0P:(DE-HGF)0$$aEsch, L.$$b5
000280732 7001_ $$0P:(DE-HGF)0$$aSchaffrath, U.$$b6
000280732 7001_ $$0P:(DE-HGF)0$$aFukuzaki, E.$$b7
000280732 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b8
000280732 7001_ $$0P:(DE-HGF)0$$aBüchs, J.$$b9$$eCorresponding author
000280732 773__ $$0PERI:(DE-600)2091377-1$$a10.1186/s12934-015-0348-8$$p156$$tMicrobial cell factories$$v14$$x1475-2859$$y2015
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.pdf$$yOpenAccess
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.gif?subformat=icon$$xicon$$yOpenAccess
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280732 8564_ $$uhttps://juser.fz-juelich.de/record/280732/files/art%253A10.1186%252Fs12934-015-0348-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280732 909CO $$ooai:juser.fz-juelich.de:280732$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143642$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000280732 9131_ $$0G:(DE-HGF)POF2-89581$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vBiotechnology$$x0
000280732 9141_ $$y2015
000280732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280732 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280732 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280732 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROB CELL FACT : 2014
000280732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280732 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000280732 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280732 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280732 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280732 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280732 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000280732 980__ $$ajournal
000280732 980__ $$aVDB
000280732 980__ $$aUNRESTRICTED
000280732 980__ $$aI:(DE-Juel1)IMET-20090612
000280732 9801_ $$aUNRESTRICTED
000280732 9801_ $$aFullTexts