000280743 001__ 280743
000280743 005__ 20210129221415.0
000280743 0247_ $$2doi$$a10.1093/protein/gzv061
000280743 0247_ $$2Handle$$a2128/9704
000280743 0247_ $$2WOS$$aWOS:000370301400004
000280743 0247_ $$2altmetric$$aaltmetric:4861772
000280743 0247_ $$2pmid$$apmid:26647400
000280743 037__ $$aFZJ-2016-00500
000280743 041__ $$aEnglish
000280743 082__ $$a540
000280743 1001_ $$0P:(DE-Juel1)131480$$aKovacic, Filip$$b0
000280743 245__ $$aStructural features determining thermal adaptation of esterases
000280743 260__ $$aOxford$$bOxford Univ. Press$$c2015
000280743 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453733129_6242
000280743 3367_ $$2DataCite$$aOutput Types/Journal article
000280743 3367_ $$00$$2EndNote$$aJournal Article
000280743 3367_ $$2BibTeX$$aARTICLE
000280743 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280743 3367_ $$2DRIVER$$aarticle
000280743 520__ $$aThe adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are still poorly understood at the molecular level. Our analysis of four homologous esterases isolated from bacteria living at temperatures ranging from 10°C to 70°C suggested an adaptation route for the modulation of protein thermal properties through the optimization of local flexibility at the protein surface. While the biochemical properties of the recombinant esterases are conserved, their thermal properties have evolved to resemble those of the respective bacterial habitats. Molecular dynamics simulations at temperatures around the optimal temperatures for enzyme catalysis revealed temperature-dependent flexibility of four surface-exposed loops. While the flexibility of some loops increased with raising the temperature and decreased with lowering the temperature, as expected for those loops contributing to the protein stability, other loops showed an increment of flexibility upon lowering and raising the temperature. Preserved flexibility in these regions seems to be important for proper enzyme function. The structural differences of these four loops, distant from the active site, are substantially larger than for the overall protein structure, indicating that amino acid exchanges within these loops occurred more frequently thereby allowing the bacteria to tune atomic interactions for different temperature requirements without interfering with the overall enzyme function.
000280743 536__ $$0G:(DE-HGF)POF2-89581$$a89581 - Biotechnology (POF2-89581)$$cPOF2-89581$$fPOF II T$$x0
000280743 7001_ $$0P:(DE-HGF)0$$aMandrysch, A.$$b1
000280743 7001_ $$0P:(DE-HGF)0$$aPoojari, C.$$b2
000280743 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b3
000280743 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b4$$eCorresponding author
000280743 773__ $$0PERI:(DE-600)1466729-0$$a10.1093/protein/gzv061$$n2$$p65-76$$tProtein engineering design and selection$$v29$$x0269-2139$$y2015
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.pdf$$yOpenAccess
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.gif?subformat=icon$$xicon$$yOpenAccess
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280743 8564_ $$uhttps://juser.fz-juelich.de/record/280743/files/Protein%20Engineering%2C%20Design%20and%20Selection-2016-Kovacic-65-76.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280743 909CO $$ooai:juser.fz-juelich.de:280743$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000280743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131480$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280743 9131_ $$0G:(DE-HGF)POF2-89581$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vBiotechnology$$x0
000280743 9141_ $$y2015
000280743 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280743 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000280743 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000280743 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280743 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEIN ENG DES SEL : 2014
000280743 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280743 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280743 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280743 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280743 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000280743 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280743 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000280743 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280743 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280743 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280743 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000280743 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1
000280743 9801_ $$aUNRESTRICTED
000280743 9801_ $$aFullTexts
000280743 980__ $$ajournal
000280743 980__ $$aVDB
000280743 980__ $$aI:(DE-Juel1)IMET-20090612
000280743 980__ $$aI:(DE-Juel1)ICS-6-20110106
000280743 980__ $$aUNRESTRICTED
000280743 981__ $$aI:(DE-Juel1)IBI-7-20200312
000280743 981__ $$aI:(DE-Juel1)ICS-6-20110106