000280760 001__ 280760
000280760 005__ 20240711085556.0
000280760 0247_ $$2doi$$a10.1039/C5TA06379E
000280760 0247_ $$2ISSN$$a2050-7488
000280760 0247_ $$2ISSN$$a2050-7496
000280760 0247_ $$2Handle$$a2128/9703
000280760 0247_ $$2WOS$$aWOS:000363163200061
000280760 037__ $$aFZJ-2016-00517
000280760 041__ $$aEnglish
000280760 082__ $$a540
000280760 1001_ $$0P:(DE-HGF)0$$aBreuer, Stefan$$b0
000280760 245__ $$aSeparating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3
000280760 260__ $$aLondon {[u.a.]$$bRSC$$c2015
000280760 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453110169_16479
000280760 3367_ $$2DataCite$$aOutput Types/Journal article
000280760 3367_ $$00$$2EndNote$$aJournal Article
000280760 3367_ $$2BibTeX$$aARTICLE
000280760 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280760 3367_ $$2DRIVER$$aarticle
000280760 520__ $$aLithium aluminium titanium phosphate (LATP) belongs to one of the most promising solid electrolytes. Besides sufficiently high electrochemical stability, its use in lithium-based all-solid-state batteries crucially depends on the ionic transport properties. While many impedance studies can be found in literature that report on overall ion conductivities, a discrimination of bulk and grain boundary electrical responses via conductivity spectroscopy has rarely been reported so far. Here, we took advantage of impedance measurements that were carried out at low temperatures to separate bulk contributions from the grain boundary responses. It turned out that bulk ion conductivity is by at least three orders of magnitude higher than ion transport across the grain boundary regions. At temperatures well below ambient long-range Li ion dynamics is governed by activation energies ranging from 0.26 to 0.29 eV depending on the sintering conditions. As an example, at temperatures as low as 173 K, the bulk ion conductivity, measured in N2 inert gas atmosphere, is in the order of 8.1 × 10−6 S cm−1. Extrapolating this value to room temperature yields ca. 3.4 × 10−3 S cm−1 at 293 K. Interestingly, exposing the dense pellets to air atmosphere over a long period of time causes a significant decrease of bulk ion transport. This process can be reversed if the phosphate is calcined at elevated temperatures again.
000280760 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000280760 588__ $$aDataset connected to CrossRef
000280760 7001_ $$0P:(DE-HGF)0$$aPrutsch, Denise$$b1
000280760 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b2
000280760 7001_ $$0P:(DE-HGF)0$$aEpp, Viktor$$b3
000280760 7001_ $$0P:(DE-HGF)0$$aPreishuber-Pflügl, Florian$$b4
000280760 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b5
000280760 7001_ $$0P:(DE-HGF)0$$aWilkening, Martin$$b6$$eCorresponding author
000280760 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C5TA06379E$$gVol. 3, no. 42, p. 21343 - 21350$$n42$$p21343 - 21350$$tJournal of materials chemistry / A$$v3$$x2050-7496$$y2015
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.pdf$$yOpenAccess
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.gif?subformat=icon$$xicon$$yOpenAccess
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000280760 8564_ $$uhttps://juser.fz-juelich.de/record/280760/files/c5ta06379e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280760 909CO $$ooai:juser.fz-juelich.de:280760$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000280760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280760 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000280760 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universität Graz$$b6
000280760 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000280760 9141_ $$y2015
000280760 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000280760 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280760 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280760 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2014
000280760 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2014
000280760 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280760 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280760 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280760 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280760 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000280760 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280760 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280760 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280760 920__ $$lyes
000280760 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000280760 9801_ $$aUNRESTRICTED
000280760 9801_ $$aFullTexts
000280760 980__ $$ajournal
000280760 980__ $$aVDB
000280760 980__ $$aUNRESTRICTED
000280760 980__ $$aI:(DE-Juel1)IEK-1-20101013
000280760 981__ $$aI:(DE-Juel1)IMD-2-20101013