001     280760
005     20240711085556.0
024 7 _ |a 10.1039/C5TA06379E
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/9703
|2 Handle
024 7 _ |a WOS:000363163200061
|2 WOS
037 _ _ |a FZJ-2016-00517
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Breuer, Stefan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li1.5Al0.5Ti1.5(PO4)3
260 _ _ |a London {[u.a.]
|c 2015
|b RSC
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453110169_16479
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Lithium aluminium titanium phosphate (LATP) belongs to one of the most promising solid electrolytes. Besides sufficiently high electrochemical stability, its use in lithium-based all-solid-state batteries crucially depends on the ionic transport properties. While many impedance studies can be found in literature that report on overall ion conductivities, a discrimination of bulk and grain boundary electrical responses via conductivity spectroscopy has rarely been reported so far. Here, we took advantage of impedance measurements that were carried out at low temperatures to separate bulk contributions from the grain boundary responses. It turned out that bulk ion conductivity is by at least three orders of magnitude higher than ion transport across the grain boundary regions. At temperatures well below ambient long-range Li ion dynamics is governed by activation energies ranging from 0.26 to 0.29 eV depending on the sintering conditions. As an example, at temperatures as low as 173 K, the bulk ion conductivity, measured in N2 inert gas atmosphere, is in the order of 8.1 × 10−6 S cm−1. Extrapolating this value to room temperature yields ca. 3.4 × 10−3 S cm−1 at 293 K. Interestingly, exposing the dense pellets to air atmosphere over a long period of time causes a significant decrease of bulk ion transport. This process can be reversed if the phosphate is calcined at elevated temperatures again.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Prutsch, Denise
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 2
700 1 _ |a Epp, Viktor
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Preishuber-Pflügl, Florian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 5
700 1 _ |a Wilkening, Martin
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1039/C5TA06379E
|g Vol. 3, no. 42, p. 21343 - 21350
|0 PERI:(DE-600)2702232-8
|n 42
|p 21343 - 21350
|t Journal of materials chemistry / A
|v 3
|y 2015
|x 2050-7496
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280760/files/c5ta06379e.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280760
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129667
910 1 _ |a Universität Graz
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21