001     280780
005     20230426083131.0
024 7 _ |a 10.1103/PhysRevB.91.035442
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/10782
|2 Handle
024 7 _ |a WOS:000351217900004
|2 WOS
024 7 _ |a altmetric:2527801
|2 altmetric
037 _ _ |a FZJ-2016-00536
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Misiorny, M.
|0 P:(DE-Juel1)145304
|b 0
|e Corresponding author
245 _ _ |a Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453133404_16471
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a By means of electronic transport, we study the transverse magnetic anisotropy of an individual Fe4 single-molecule magnet (SMM) embedded in a three-terminal junction. In particular, we determine in situ the transverse anisotropy of the molecule from the pronounced intensity modulations of the linear conductance, which are observed as a function of applied magnetic field. The proposed technique works at temperatures exceeding the energy scale of the tunnel splittings of the SMM. We deduce that the transverse anisotropy for a single Fe4 molecule captured in a junction is substantially larger than the bulk value.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
542 _ _ |i 2015-01-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
542 _ _ |i 2016-01-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Burzurí, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gaudenzi, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Park, K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Leijnse, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wegewijs, M. R.
|0 P:(DE-Juel1)131026
|b 5
700 1 _ |a Paaske, J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cornia, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a van der Zant, H. S. J.
|0 P:(DE-HGF)0
|b 8
773 1 8 |a 10.1103/physrevb.91.035442
|b American Physical Society (APS)
|d 2015-01-30
|n 3
|p 035442
|3 journal-article
|2 Crossref
|t Physical Review B
|v 91
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.91.035442
|g Vol. 91, no. 3, p. 035442
|0 PERI:(DE-600)2844160-6
|n 3
|p 035442
|t Physical review / B
|v 91
|y 2015
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280780/files/PhysRevB.91.035442.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/280780/files/PhysRevB.91.035442.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/280780/files/PhysRevB.91.035442.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/280780/files/PhysRevB.91.035442.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280780/files/PhysRevB.91.035442.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280780
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131026
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1093/acprof:oso/9780198567530.001.0001
|1 D. Gatteschi
|2 Crossref
|9 -- missing cx lookup --
|y 2006
999 C 5 |a 10.1038/nmat2133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1186874
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl1009603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3050
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature11341
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2374
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35071024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/c0cs00158a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1249802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/anie.200390099
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.046603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.284.5411.133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.196601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.196805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.126601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.256804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.057201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja0576381
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature09478
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.214403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511840463
|1 D. Ferry
|2 Crossref
|9 -- missing cx lookup --
|y 2009
999 C 5 |a 10.1103/PhysRevLett.109.147203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.synthmet.2010.11.050
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.79.1217
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/chem.200900483
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.235304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.224420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.235424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.80.395
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.245109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.140403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3762/bjnano.2.75
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl500524w
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 O. Kahn
|y 1993
|2 Crossref
|t Molecular Magnetism
|o O. Kahn Molecular Magnetism 1993
999 C 5 |1 R. Boča
|y 1999
|2 Crossref
|t Theoretical Foundations of Molecular Magnetism
|o R. Boča Theoretical Foundations of Molecular Magnetism 1999
999 C 5 |1 A. Messiah
|y 1999
|2 Crossref
|t Quantum Mechanics
|o A. Messiah Quantum Mechanics 1999
999 C 5 |a 10.1103/PhysRevLett.98.057201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature06962
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21