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Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet
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By means of electronic transport, we study the transverse magnetic anisotropy of an individual Fe4 single-

molecule magnet (SMM) embedded in a three-terminal junction. In particular, we determine in situ the transverse

anisotropy of the molecule from the pronounced intensity modulations of the linear conductance, which are

observed as a function of applied magnetic field. The proposed technique works at temperatures exceeding the

energy scale of the tunnel splittings of the SMM. We deduce that the transverse anisotropy for a single Fe4

molecule captured in a junction is substantially larger than the bulk value.
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I. INTRODUCTION

Single-molecule magnets (SMMs) [1] have been proposed

as candidates for applications in molecular spintronics [2–7].

Especially enticing is the prospect of using an individual SMM

as a base component of a spintronic circuit which would be

capable of storing [8] or processing [7,9–11] classical and

quantum information. In general, the essential prerequisite

for this is a magnetic bistability which in SMMs stems

from a large molecular spin and a strong easy-axis magnetic

anisotropy, given by a parameter D. This tends to fix the

spin along an axis determined by the molecular structure,

without favoring any specific direction along this axis. In

consequence, an energy barrier ∼DS2 protects the spin of

the molecule against reversal between the two opposite,

energetically degenerate orientations. From this point of view,

detection of the additional transverse magnetic anisotropy,

characterized by the parameter E > 0 in the Hamiltonian Ĥ =

−DŜ2
z + E(Ŝ2

x − Ŝ2
y ), is crucially important. Such transverse

anisotropy can impair the bistability by opening under-barrier

quantum tunneling channels for spin reversal [1,12,13]. These

quantum tunneling processes are also of fundamental interest

since the spin-dynamics displays pronounced geometric or

Berry-phase effects [14–19].

Hitherto, most techniques aiming to extract the transverse

anisotropy parameter E are based on the detection of the tunnel

splittings it induces, which display a characteristic magnetic

field dependence [1,12]. The major challenge for all such

approaches is that these splittings are complicated functions

of E, and even more, the splitting for high-spin states and low

magnetic fields are smaller than the parameter E itself by sev-

eral orders of magnitude. Using Landau-Zener spectroscopy
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the tunnel splittings have been accurately determined in bulk

Fe8 by measuring their pronounced Berry-phase oscillations

[14]. Also in bulk crystals and solutions of SMMs the

parameter E has been established by different methods, such

as high-frequency electron paramagnetic resonance [20,21]

and inelastic neutron scattering [22]. These methods, however,

probe large assemblies of molecules and thus are not designed

for investigating the magnetic properties of an individual

SMM. As a result, little is known about the transverse

anisotropy of individual SMMs in spintronic devices.

In this paper we propose an approach for extracting the

parameter E of a single molecule by employing electronic

transport measurements. We study a Fe4 SMM captured in a

gateable junction (for details see Appendix A)—a geometry

close to envisaged device structures—which is a unique tool

for addressing the spin in different redox states of a molecule

[5]. We show that, as a consequence of the mixing of the spin

eigenstates of the SMM, the transverse anisotropy significantly

manifests itself in transport. In particular, we predict and

experimentally observe characteristic variations of the

Coulomb peak amplitude with the magnetic field from which

the parameter E can be estimated. Importantly, the method

proposed here works at temperatures and electron tunnel

broadenings Ŵ exceeding E by many orders of magnitude,

while E, in its turn, much exceeds the tunnel splittings.

II. THREE-TERMINAL SMM JUNCTIONS

A scheme of a three-terminal SMM junction is shown

in Fig. 1(a). An SMM bridges the source and drain gold

electrodes. An underlying aluminum electrode separated by

a few nanometers of aluminum oxide allows for electri-

cal gating of the molecule and, thus, accessing different

redox states; see also Appendix A2. The chip containing

the junctions is mounted on a piezo-driven rotator that

enables to change in situ the orientation between the external
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FIG. 1. (Color online) (a) Schematic depiction of a molecular

three-terminal transistor with a single Fe4 SMM bridging the junction.

(b) Spatial orientation of an external magnetic field with respect to

the principal axes set by the magnetic anisotropy of an SMM. (c)

Differential-conductance map, dI/dVb, measured as a function of

gate Vg and bias Vb voltages showing two charge states N (neutral)

and N + 1 (charged) for sample A. (d) Representative Coulomb peaks

[corresponding to linear conductance G ≡ dI/dVb|Vb=0, e.g., marked

by dashed line in (c)] measured at different values of the external

magnetic field B. The bold arrowed lines and color dots serve as a

guide for eyes to indicate the nonmonotonic change in the Coulomb

peak height.

magnetic field B and the magnetic anisotropy axes of the

molecule, which is characterized by angles θ and φ as

illustrated in Fig. 1(b). All the measurements are performed at

T = 1.8 K.

The differential conductance plotted in Fig. 1(c) shows the

standard signatures of sequential electron tunneling (SET)

through a molecule with two competing charge states tuned by

a gate voltage [23]. Strong high-conductance resonance lines

separate adjacent charge-stable Coulomb blockade regions,

labeled N and N + 1, from the SET regions where transport is

possible. Importantly, several fingerprint features of the stable

Fe4 SMM can be identified: (i) high charging energies expected

for an individual molecule; (ii) a strong SET excitation at

approximately 4.8 meV [5], specific to Fe4 as it corresponds to

the predicted transition energy between the ground (SN = 5)

and the first-excited (SN = 4) spin multiplets for the neutral

molecule [20]; (iii) a non-linear shift of the degeneracy peak

in the presence of magnetic field as described by gate-voltage

spectroscopy (for details see Ref. [24] and Appendix A3).

Moreover, depending on the strength of tunnel coupling

Ŵ, split Kondo zero-bias anomalies in Coulomb blockade

regimes of subsequent charge states can be observed, which

show the zero-field splitting (ZFS) at the values expected

for the Fe4 SMM [5,25]. These features also indicate that

the molecule is in an intermediate coupling regime with the

electrodes, with its upper limit estimated to be Ŵ = 1.6 meV,

obtained from the full width at half maximum of the crossing

(degeneracy) point of the Coulomb edges at zero bias, the

Coulomb peak; for further discussion see Appendix A3.

III. GATE-VOLTAGE “POSITION” SPECTROSCOPY

In a magnetic field the position of the Coulomb peak (CP)

depends both on the magnitude and the orientation of an

external magnetic field B [24]. In short, the CP marks the

transition between the ground states of two spin multiplets,

with spin values SN and SN+1, for the two neighboring charge

states. The energy difference between these states is then

a function of B, and in particular, it translates into a shift

of the linear response degeneracy point in Vg, as shown in

Fig. 1(d). From such a shift one can infer that the ground

spin-multiplets of the two charge states evolve differently

in the applied field; therefore, the shift provides information

about the magnetic properties of the system. For example, in

simple quantum dots the shift corresponds just to the linear

Zeeman effect which is isotropic [26]. On the other hand, for

magnetically anisotropic molecules, like the SMMs discussed

here, not only does the CP shift depend on the relative

sample-field orientation, allowing us to extract the value of

the angle θ , but it also provides information about the uniaxial

magnetic anisotropy (D) [24]. However, the gate-voltage

position of the peak, determined by the low-energy spectrum,

is insensitive to the small tunnel splitting corrections induced

by the transverse magnetic anisotropy. Below we show that

information about the transverse magnetic anisotropy (E) can

instead be inferred from a nonmonotonic dependence of the

peak amplitude Gmax, such as in Fig. 1(d), which relies on

transition probabilities between different spin states. We have

measured around 200 junctions, of which 17 showed clear

molecular signatures. From those, 9 samples displayed a clear

CP suitable to perform gate spectroscopy and a magnetic field

modulation of Gmax. Further discussion of statistics together

with differential-conductance maps for several devices are

presented in Appendix A4.

In Fig. 2(a) the amplitude Gmax of the CP, normalized to its

value at B = 0, is plotted as a function of B for two different

samples. For both samples, the gate-voltage analysis of the

peak position allows us to conclude that the magnetic field lies

in the hard plane (θ ≈ 90◦); see Appendix A3. Interestingly,

Gmax(B) for the two samples exhibits a significantly different

behavior. If only uniaxial magnetic anisotropy was present

(E = 0), the transport properties of the molecule would be

left unaffected upon rotation of the field in the hard plane. On

the contrary, for E �= 0 this rotational symmetry is broken.

The dissimilar behavior of the amplitude Gmax as observed in

Fig. 2(a) is therefore attributed to different values of the angle φ

in the presence of a nonzero E. Similar curve shapes have been

observed in additional samples, as shown in Fig. 9. Although

the values of E for bulk samples/monolayers of SMMs

are typically small (for Fe4 E/D � 0.07) [21,27], the linear

conductance through a molecule appears to be measurably

influenced by it. A similar change in the field-evolution of

Gmax is also observed in a single sample C, shown in Fig. 2(b),

by rotating the sample holder relative to the magnetic field.

IV. THEORY AND DISCUSSION

In order to understand how the transverse magnetic

anisotropy could qualitatively affect the linear conductance

through an SMM (i.e., the CP amplitude), while hardly influ-
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FIG. 2. (Color online) Signatures of transverse magnetic

anisotropy in electronic transport at T = 1.8 K. (a) Dependence of

the Coulomb peak (CP) height Gmax [i.e., the maximal value of G;

cf. Fig. 1(d) on magnetic field B shown for two different samples

where the orientation of the magnetic field lies in the hard plane

(θ = 90◦). (b) Analogous to (a) for a single sample, except that now

θ is varied and φ is unknown. Note that the evolution of the CP

position in magnetic field, and not Gmax, was previously analyzed

in Ref. [24] for samples A and C. (Bottom panels) Theoretical

predictions for evolution of the CP height with magnetic field B

kept in the hard plane (c) for indicated values of E/D and φ = 0◦,

whereas in (d) for several angles φ and the fixed value of E/D

estimated from (a). Bold dashed lines represent the case of E/D = 0

for φ = 0◦ (c) and φ = 90◦ (d). Notice that the shape of Gmax for

E/D = 0 is independent of φ due to the rotational symmetry around

the molecule’s easy axis.

encing its gate-voltage position, we use a minimal molecular

quantum-dot model based on two giant-spin Hamiltonians [1],

ĤSMM =
∑

n=N,N+1

[

Ĥn + ĤZ
n

]

, (1)

one for each charge state. Here Ĥn accounts for the magnetic

anisotropy of the SMM in the nth charge state,

Ĥn = −Dn

(

Ŝz
n

)2
+ En

[(

Ŝx
n

)2
−

(

Ŝy
n

)2]

, (2)

with the first (second) term representing the uniaxial (trans-

verse) magnetic anisotropy, and ĤZ
n = gµb B · Ŝn is the

Zeeman term (g ≈ 2). We combine this with a master equation

description of the SET transport to nonmagnetic electrodes

with tunnel coupling Ŵ [16,28,29]. The essential steps of

this approach are provided in Appendix B3. The appearance

of a clear CP in the experiment restricts SN+1 = SN ± 1/2

(otherwise spin blockade would be seen) [5]. For the Fe4

SMM we can estimate SN = 5 and DN ≡ D ≈ 56 µeV for

the neutral state, whereas from the CP position dependence

we obtain SN+1 = 9/2 and fix DN+1 ≈ 1.2D = 68 µeV with

approximately collinear easy axes for both charge states,

all in agreement with previous measurements [24]; see also

Appendix A3. We assume that upon charging only the

overall energy scale of the magnetic anisotropy changes,

i.e., EN/DN ≈ EN+1/DN+1, leaving just a single parameter

EN = E for the transverse anisotropy.

In Fig. 2(c) we plot the calculated CP amplitude Gmax for

θ = 90◦ and φ = 0◦ as a function of the applied field B.

Surprisingly, the calculations reveal that a nonzero value of

E significantly influences the current through the molecule.

By adjusting the parameter E/D, qualitative agreement with

the measured amplitude variation is obtained for sample A

when E/D ≈ 0.15–0.2. The dissimilar behavior of Gmax

between samples A and B is then qualitatively reproduced

when assuming strongly differing values of the angle φ as

shown in Fig. 2(d). From the shape of the curves we estimate

the value of φ to be φA ≈ 0◦ for sample A and φB ≈ 90◦ for

sample B. Note that the minimum of Gmax for φ = 90◦ appears

in Fig. 2(d) at a somewhat larger B field value than for sample

B, which signifies larger E/D; cf. Figs. 13–15. Therefore,

combining the information from Figs. 2(c) and 2(d), the CP

amplitude could be used to estimate the values of E and φ.

The obtained rough estimate E/D ≈ 0.17 is larger than the

values reported for bulk samples [27], as also suggested by

x-ray magnetic circular dichroism (XMCD) experiments on

Fe4 monolayers deposited on gold [21].

To gain deeper insight into the mechanism leading to

a modulation of Gmax, we analyze in Fig. 3(a) how the

calculated B traces of the CP amplitude evolve with tempera-

ture. The appearance of a maximum at around B = 3.25 T

(marked by the vertical dashed line) and its enhancement

with increasing temperature suggests that this feature is built

up from contributions of many excited states of the SMM.

This is indeed confirmed by inspection of the evolution

of the occupation probabilities shown in Fig. 3(b) for the

experimental temperature T = 1.8 K. To obtain this figure

we first find the eigenstates of Ĥn, given by Eq. (2). For

n = N,N + 1 we obtain two sets of eigenspectra, {εk′

N } and

{εk
N+1}. Here k′ and k label the states in order of increasing

energy, starting from k′ = 0 (k = 0) for the neutral (charged)

ground state. Using these energies and states, we calculate

the probabilities from the master equation. One should note

that the energies [see Fig. 4(b)] and occupation probabilities

of corresponding states (k = k′) for different charge are very

similar. From Fig. 3(b), however, it is not clear which of the

maxima of the probabilities is responsible for the maximum

of the Gmax(B) curves, indicated by the vertical dashed line.

Instead, to understand the Gmax(B) dependence in Fig. 3(a),

one has to consider the transition energies εk
N+1 − εk′

N between

levels of different charge states. This is demonstrated in

Fig. 3(c) (see also Fig. 4), where the horizontal dashed lines

represent the available thermal energy. The transition energies

fall into three generic groups: (i) low-energy transitions (k =

k′, green lines); (ii) transitions of low energy for small B

but high energy for large B (k,k′ = 0,1 or k,k′ = 2,3, orange

lines); (iii) high-energy transitions (remaining k and k′ pairs,

blue lines). Importantly, the temperatures used in Fig. 3(a)

lie just below the group of transition-energy curves exhibiting

a minimum at finite magnetic fields roughly between 2 and

4 T [blue curves in Fig. 3(c). As the magnetic field is

augmented from zero, these curves thus initially approach

the thermal energy (horizontal dashed lines) before moving

away at higher fields towards their high-field asymptotes. This
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FIG. 3. (Color online) Theoretical analysis of transport for fixed

D = 56 µeV and E/D = 0.17 and B along the hard axis (θ = 90◦

and φ = 0◦). (a) Conductance Gmax(B) traces for various tempera-

tures over the range 1.2 K–2.4 K at intervals of 0.2 K. (b) Occupation

probabilities for several lowest-energy states in the spin multiplets

for N and N + 1 at T = 1.8 K. Here k′ (k) labels the states in order

of increasing energy for N (N + 1), with k′ = 0 (k = 0) denoting the

ground state. (c) Relevant transition energies εk
N+1 − εk′

N for k,k′ ≤ 4

determining the SET processes at the Coulomb resonance (note that

ε0
N+1 = ε0

N is restored for each B by tuning Vg). Different colors of

lines are used to distinguish groups of transitions with respect to

possible combinations of indices k and k′ (see the main text). For

the association of these lines with specific transitions as well as the

energies of individual levels see Fig. 4. (d) Evolution of the current

vs magnetic field at T = 1.8 K calculated by including a restricted

number of states per spin multiplet up to r , where r = k′
max + 1 =

kmax + 1, showing that for small r significant deviations are found

compared to the calculation involving all the states (dashed line),

used in all other plots. For a precise definition of the current Ir see

Appendix B3.

leads to an enhancement of Gmax for B � 3.25 T, followed by a

steady decrease, i.e., the characteristic nonmonotonic behavior

experimentally observed in Fig. 2(a). We emphasize that the

above mechanism does not constitute a purely spectroscopic

method: The current and probabilities depend on both the

energies and quantum states, which determine the tunnel

rates. The importance of including many excited states in the

calculation is quantified in Fig. 3(d), where we show how the

nonmonotonic behavior can be strongly overestimated when

including too few excited states; see also Figs. 13–16. We

note that some additional remarks regarding signatures of the

transverse anisotropy parameter E in the peak amplitude of

Gmax are discussed in Appendix B4.

Finally, worth noting is the larger-than-predicted mod-

ulation of the CP amplitude observed in the experiments.

We briefly comment on the verifications to rule out some

other contributions that could lead to such an amplification.

First, the master equation analysis was constrained to a weak

tunnel-coupling Ŵ as compared to temperature. We verified

that higher-order tunnel processes that lead to broadening and

inelastic tunneling do not increase the scale of the modulation

of the CP height. For this we employed a perturbative approach

FIG. 4. (Color online) Panel (a) is identical to Fig. 3(c), but now

for each transition-energy line we specify the initial and final states,

with respective energies εk′

N and εk
N+1, between which the transition

occurs. Recall that k is an index which numbers states in a given

spin multiplet with respect to energy, with k = 0 denoting the ground

state. Moreover, by labeling the lines with (k,k′) we mean that k refers

to the final state of a charged SMM (N + 1), whereas k′ represents

the initial state of a neutral SMM (N ). We note that information

shown in (a) cannot be readily seen from energies εk
n (n = N,N + 1)

of the individual levels, which for the completeness of the present

discussion are plotted in (b). Observe that since energies in (b) are

calculated at the Coulomb resonance, the curves for k = 0 overlap.

including next-to-leading tunneling processes [30] and a non-

perturbative numerical renormalization group (NRG) method

[31–33]. Second, we assumed symmetric tunnel coupling of

the SMM to both electrodes with the same energy Ŵ. One can

show that a junction asymmetry gives rise to an overall constant

factor suppressing the conductance Gmax. Thus, this cannot

change its field dependence. Third, the addition of higher-order

magnetic anisotropy terms to the SMM model, Eq. (2), is

also not likely to affect the magnitude of the modulation. We

checked, for instance, the effect of the fourth-order transverse

anisotropy of the form Cn[(Ŝx
n )4 − (Ŝ

y
n )4], for a range of values

of the parameter CN/N+1 for which this term competes with

the second-order transverse term. We thus conclude that

the intensity of the modulation may rely on some intrinsic

amplification mechanism not captured by our model, i.e.,

going beyond the giant-spin model [19,34], when considering

a single electron interacting with the molecule.
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FIG. 5. (Color online) How to determine the transverse magnetic anisotropy constant E of an individual SMM from its transport

characteristics. The position (a),(b) and amplitude (c)–(f) of the CP are shown for different values of the parameters D and E of the

SMM model with SN = 5 and SN+1 = 9/2 for T = 1.8 K. Note that we employ the assumption for the Fe4 molecule from the main text, that is,

D = DN = DN+1/1.2 and E = EN , with EN/EN+1 = DN/DN+1, and a relatively large value of E/D (red lines) is used for clear illustration

of the effects under discussion. In panels (a),(c),(e) the external magnetic field B is oriented along the SMM’s hard axis x [see inset in (c)],

whereas in panels (b),(d),(f) the field is parallel to the intermediate axis y [see inset in (d)]. In panel (g) we present how temperature affects

the occurrence of characteristic peaks associated with the presence of transverse magnetic anisotropy for B along the hard axis x; for further

details, see Fig. 16. To make the discussion complete, in panel (h) we show analogous dependencies but in the case when the field lies along the

intermediate axis y. Finally, the frame at the bottom contains a schematic summary of the procedure leading to estimation of E: (i) Using the

analysis of the CP position, find Dn and adjust the magnetic field B so that it is contained in the hard plane, i.e., the plane perpendicular to the

easy axis z. (ii) Rotating systematically the magnetic field B in the hard plane, analyze the CP amplitude to find the direction of the molecule’s

hard axis. This will be characterized by the occurrence of additional peaks in the amplitude, whose field position allows for estimating En.

(iii) If no local maxima in the amplitude can be seen, adjust (try increasing) the temperature.
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V. FITTING PROCEDURE: HOW TO FIND ANISOTROPY

PARAMETERS OF A SINGLE MOLECULE FROM ITS

TRANSPORT SPECTRA

We summarize here in a few steps how to determine

magnetic anisotropy of an individual SMM [see Eqs. (1) and

(2) and Appendix B1) by exploiting the information contained

both in the CP position as well as in the magnetic field evolution

of its amplitude. In particular, the method under discussion

allows for finding both the magnetic anisotropy constants Dn

and En in two charge states (i.e., for n = N,N + 1) of an

SMM and the orientation of an external magnetic field relative

to the molecule’s principle axes, given by the angles θ and φ.

(i) Let us first consider only the CP position, shown in the

left panel of Fig. 5. As explained in Ref. [24], by analyzing the

position of the CP one can immediately conclude whether a

molecule captured in the junction exhibits magnetic anisotropy

at all. If the molecule is spin isotropic, one observes a linear

dependence on the magnetic field [see dashed line in Figs. 5(a)

and 5(b)] that reflects the linear Zeeman effect. On the other

hand, if the molecule is spin anisotropic, this dependence

becomes nonlinear, and the uniaxial magnetic anisotropy

parameter Dn together with the angle θ can be estimated

from it. This, in turn, permits for systematic adjustment

of the magnetic field’s orientation so that the field is kept

perpendicular to the molecule’s easy axis z, which corresponds

to θ = 90◦.

(ii) The transverse magnetic anisotropy breaks the

molecule’s rotational symmetry around the easy axis z (see

also Appendix B2). In consequence, one expects that such

a symmetry breaking should manifest itself in different

transport characteristics of the system occurring for various

orientations of the magnetic field in the hard plane (i.e.,

the plane perpendicular to the easy axis). From Figs. 5(a)

and 5(b) it is clear that the sole position dependence in practice

does not allow one to derive reliably either the transverse

magnetic anisotropy constant En or the angle φ. For this

purpose, also the amplitude of the CP has to be taken into

consideration.

(iii) The presence of transverse magnetic anisotropy can

be confirmed by observation of how the field dependence of

the CP amplitude changes when rotating the field orderly in

the hard plane, or, in other words, by varying the angle φ.

Specifically, one should notice then two significantly different

shapes of the amplitude showing up every 90◦; cf. red lines

with others in the right panel of Fig. 5. These two limiting cases

represent the situation when the magnetic field lies either along

the molecule’s hard axis x (φ = 0◦ or φ = 180◦), Figs. 5(c)

and 5(e), or along the molecule’s intermediate axis y (φ = 90◦

or φ = 270◦), Figs. 5(d) and 5(f). Consequently, this enables

one to determine the approximate value of the angle φ.

(iv) The effect of transverse magnetic anisotropy on the CP

amplitude should be most pronounced for the magnetic field

aligned along the molecule’s hard axis x; see Appendix B2

and Figs. 2(c) and 2(d). For a sufficiently high temperature

T [see Figs. 5(f) and 5(g) and Fig. 16] and observes then

formation of local maxima, marked by red arrows in Figs. 5(c)

and 5(e), from whose position the value of the transverse

magnetic anisotropy constant En can be numerically

estimated.

Importantly, the method under discussion relies on a

simultaneous fitting of position (sensitive to Dn) and the

amplitude (sensitive both to Dn and En) of the CP. This strictly

limits the freedom of the parameters’ choice, basically leaving

En to be determined from the field value at which the maximum

amplitude is acquired. For instance, making the parameters

Dn smaller by 25% than the one used above (given the

fixed experimental temperature T = 1.8 K), while assuming

En = 0, may also produce a maximum; see green lines in

Figs. 5(c) and 5(f). However, not only does it result in peak

positions at completely wrong magnetic fields [cf. position of

green and red arrows in Fig. 5(e)], but also the amplitude shape

remain unaltered upon changing the orientation of the field in

the hard plane [cf. red and green lines between Figs. 5(e)

and 5(f)]. This restriction, combined with the sensitivity of the

qualitative curve shape of the conductance to the parameters

is advantageous for extracting the anisotropy parameters of

SMMs in situ.

VI. CONCLUSIONS

In conclusion, we have proposed a new method of probing

the transverse magnetic anisotropy of an individual SMM

embedded in a three-terminal device. It exploits the infor-

mation contained in the spin states of the molecule through

the analysis of the magnetic field evolution of the linear

conductance amplitude Gmax. We found that the evolution

of Gmax in a magnetic field could only be reproduced when

including a sufficient number of excited states. Estimates

for the transverse anisotropy of the Fe4 SMM yield E ≈

0.17D = 9.5 µeV, a value of E significantly larger than

the observed bulk/monolayer values. This is expected for a

molecule captured in the low-symmetry environment of a

transport junction. Importantly, the technique does not rely

on the small induced tunneling effects and hence works well

at temperatures by far exceeding the tunnel splittings and even

E itself. Our measurements find larger modulation of Gmax

than calculated and the origin of this enhancement requires

further study. This method may facilitate the detection of in

situ mechanical tuning [3] or excitation [35,36] of magnetic

anisotropy of a single molecule.
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APPENDIX A: MATERIALS AND

EXPERIMENTAL METHOD

1. Details of the Fe4 single-molecule magnet

We used an Fe4 SMM with formula [Fe4 (L)2 (dpm)6]·Et2O

where Hdpm is 2,2,6,6-tetramethyl-heptan-3,5-dione and H3L

is the tripodal ligand 2-hydroxymethyl-2-phenylpropane-1,3-

diol, which carries a phenyl substituent [20]. In the bulk phase,

the crystallographic symmetry is C2 [20]. The magnetic core

035442-6



PROBING TRANSVERSE MAGNETIC ANISOTROPY BY . . . PHYSICAL REVIEW B 91, 035442 (2015)

FIG. 6. (Color online) Details of the Fe4 SMM. (a) Sketch of

the magnetic core of the Fe4 SMM. (b) Ground-state spin multiplet

(SN = 5) of the Fe4 SMM in a neutral charge state N ; for further

explanation see Appendix B2. (c) Depiction of the Fe4 SMM

illustrating the orientation of the phenyl rings [omitted in (a)] that

terminate the molecule. Note that in both (a) and (c) hydrogen atoms

are disregarded for clarity.

of the Fe4 SMM is made of 4 Fe3+ ions (each with spin

s = 5/2) as illustrated in Fig. 6(a). The antiferromagnetic

exchange interaction between the central and peripheral ions

yields a large molecular spin SN = 5 in the ground state.

Magnetic anisotropy due to the interaction with the crystal

field lifts the degeneracy of the spin multiplet into five

doublets and one singlet that are distributed over an energy

FIG. 7. (Color online) Three-terminal-junction fabrication. (a)

Schematics of the three-terminal-device fabrication process. (b)

Scanning electron microscope (SEM) image of a real three-terminal

device before electromigration.

FIG. 8. (Color online) Coulomb peak position gate-voltage spec-

troscopy. The shift of the CP position due to magnetic field for samples

A, B, and C. The solid lines are fits to ε0
N+1 − ε0

N , calculated from

the giant-spin Hamiltonian, Eqs. (1) and (2). From the fit we get the

following values: for sample A in (a), DN+1 = 61 µeV, θN = 87◦,

and θN+1 = 86◦; for sample B in (b), DN+1 = 65 µeV, θN = 86◦, and

θN+1 = 84◦; for sample C, in (c) θN = 87◦ and θN+1 = 85◦, whereas

in (d) θN = 63◦ and θN+1 = 62◦, with DN+1 = 68 µeV in both cases.

We note that the evolution of the CP position in magnetic field, and

not Gmax, for samples A and C was previously analyzed in Ref. [24].

Also note that in the fitting for sample A we included E/D = 0.2

and φ = 0◦ obtained in Fig. 2.

barrier as shown in Fig. 6(b); for further discussion see

Appendix B2. The height of the barrier, which hinders the spin

reversal, is given by U = D(SN )2, where D is the uniaxial

magnetic anisotropy parameter. In the case of bulk Fe4 the

height is U = 1.4 meV [20]. The ZFS, defined as the energy

difference between the two lowest-lying doublets (MN = ±5

and MN = ±4) is 0.5 meV. The low symmetry of the molecule

induces a transverse magnetic anisotropy E that, in bulk, is

E = 2.85 µeV from EPR measurements [20]. Finally, we note

that the molecule contains two axial tripodal ligands L3− which

hold the core together and six peripheral dpm− ligands that

create an hydrophobic envelope; see Fig. 6(c).

2. Details on the fabrication methods of the

three-terminal junctions

The three-terminal junctions are fabricated on a silicon

substrate covered by 280 nm of SiO2. The schematics of the

fabrication process is described in Fig. 7(a). The gate electrode

is fabricated by e-beam lithography and subsequent e-beam

deposition of Al. In the next step, the oxidation of the gate in

a controlled oxygen atmosphere produces a dielectric coating

layer of 2–3 nm of Al2O3. The source and drain electrodes

are fabricated by self-breaking, controlled electromigration

of a Au nanobridge deposited by e-beam lithography on top

of the oxidized gate. The self-breaking technique prevents

the formation of gold nanograins in the junction that could

mimic the behavior of a molecule. Figure 7(b) shows a

scanning electron microscope image of a device before

electromigration.
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FIG. 9. (Color online) Statistics. Differential-conductance maps, dI/dVb, shown as a function of gate Vg and bias Vb voltages together with

corresponding dependencies of the CP amplitude Gmax on magnetic field B for six different Fe4 molecular junctions. (Top) [(a)–(c)] Junctions

for which gate-voltage spectroscopy fits of the CP position (not shown) indicate θ < 60◦. (Bottom) [(d)–(f)] Junctions where θ ≈ 90◦ is found.

The shape of the field modulation of Gmax implies that for (d) and (e) the field is close to the intermediate axis (φ ≈ 90◦), whereas for (f) it is

most likely in an intermediate φ angle in the hard plane.

The molecules are deposited onto the chip by drop

casting a 10−4 M solution in toluene into a liquid cell

containing the chip with the junctions. The electromigra-

tion of the bridge and subsequent self-breaking are carried

out in solution to maximize the yield of junctions with a

molecule.
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3. Details on the gate-voltage position spectroscopy

The molecule-electrode coupling Ŵ is estimated from the

broadening of the Coulomb edge at low bias. In particular,

the full width at half maximum of the CP is used for this

purpose. We find 1.6, 2.0, and 1.4 meV for samples A, B, and

C, respectively. Note, however, that these values are an upper

limit for Ŵ since we cannot resolve the presence of additional

components for the broadening such as thermal energy or the

contribution of other molecular levels very close in energy.

Figure 8 shows the CP position in gate voltage Vg as a

function of the magnetic field for the samples A, B, and C

described in the main text and Figs. 2(a) and 2(b). The values

of Vg are multiplied by the gate coupling β to obtain energy

units (�ε) and subsequently rescaled to make �ε = 0 for

B = 0. The nonlinearity of the field dependence is a clear

signature of the magnetic anisotropy as described in the main

text (see also Ref. [24]). Moreover, the low-field “flatness” of

�ε observed in Figs. 8(a)–8(c) is indicative of a high value

of θ in contrast with Fig. 8(d). The solid lines in Fig. 8 are a

fit of the data to �ε = ε0
N+1 − ε0

N as defined by the giant-spin

Hamiltonian, Eqs. (1) and (2), and also discussed in detail

in Appendix B1. The CP position is mainly insensitive to E

(see also Supporting Information in Ref. [24]), and therefore

we can independently extract the parameters D and θ related

to the uniaxial anisotropy. Note that we fix the value of DN

(neutral state) to the bulk value DN = 56 µeV and thus the

free parameters are DN+1, θN , and θN+1. See the caption of

Fig. 8 for the fitting values of these parameters.

4. Statistics and effect of the magnetic field polarity

We measured around 200 electromigrated junctions, from

which 17 showed molecular signatures. A total of 9 molecular

junctions displayed a clear CP suitable for further analysis by

means of the gate-voltage spectroscopy method, from which

the junctions were proven to exhibit magnetic anisotropy.

Importantly, all these junctions displayed a modulation of the

peak amplitude Gmax as a function of the magnetic field. A

total of 6 of these samples could be rotated or were close to

θ = 90◦. From those, one sample was close to φ = 0◦ (hard

axis), and it is referred to as sample A. Figure 9 shows the

differential-conductance maps, dI/dVb, and corresponding

magnetic field evolutions of Gmax for different Fe4 molecular

junctions, that is, other than samples A, B, and C discussed

in the main text. The top panel [(a)–(c)] of Fig. 9 presents

samples for which the gate spectroscopy yields low values of θ .

Worthy of note is that for |B| < 4 T a decrease of Gmax is

observed with increasing |B|. On the other hand, the bottom

panel [(d)–(f)] of Fig. 9 shows examples where θ ≈ 90◦ (i.e.,

close the the hard plane). The shape of Gmax for (d) and (e)

indicates that the magnetic field is close to the intermediate

axis (φ ≈ 90◦), which follows from the analysis carried out in

the main text. For the last sample, Fig. 9(f), the field is most

likely at an intermediate angle φ in the hard plane.

In order to discard the influence of universal conductance

fluctuations induced by the magnetic field in the measure-

ments, in Fig. 10 we plot Gmax as a function of B for

the samples shown in Figs. 2(a) and 2(b) for both positive

and negative polarities of magnetic field. We note that the

main features, like the minima or maxima around 4 T, are

FIG. 10. (Color online) The effect of the reversed magnetic

field polarity on Gmax. Dependence of the scaled CP height

Gmax/Gmax(B = 0) on magnetic field B for the samples discussed

in the main text, cf. Figs. 2(a) and 2(b), showing that the curves are

symmetric upon reversal of the field polarity.

reproducible under inversion of the field polarity. Universal

conductance fluctuations are not expected to be symmetric by

changing the B polarity. Some additional symmetric structure

appears also in the measurements. The analysis of this smaller

contribution is interesting but beyond the scope of this work.

If present, conductance fluctuations would equally appear

in the zero-bias and the higher-bias conductance. Therefore,

in order to rule out their presence, we have analyzed the

magnetoresistance at higher biases and different gate voltages.

Figure 11 shows differential conductance, dI/dVb, as a

function of B measured at two different bias Vb voltages

(for a fixed gate Vg voltage) in the Coulomb blockade in

sample A. We observe an almost flat response of dI/dVb with

peak-to-peak variation of the order of 0.1 nS. This magnitude is

not comparable to the modulations we attribute to the presence

of the transverse anisotropy. Moreover, note that these two

spectra are not symmetric by reversing the magnetic field

polarity. Thus, we conclude that the universal conductance

fluctuations are not significant in our measurements.

APPENDIX B: THEORETICAL MODELING

1. Charge-dependent, giant-spin-based model of an

single-molecule magnet

The central element of the theoretical description of the

gate-spectroscopy technique is a proper choice of the model

FIG. 11. (Color online) Cotunneling background. Differential

conductance, dI/dVb, measured as a function of magnetic field B

at two different points: (a) Vg = −1.71 V and Vb = −12 mV and

(b) Vg = −1.71 V and Vb = −10.5 mV, which correspond to the

cotunneling background in the left-hand charge state of sample A; cf.

Fig. 1(c).
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FIG. 12. (Color online) Effect of magnetic anisotropy on the energy spectrum of SMM. (Top)/(Bottom) [(a,c,e)/(b,d,f)] The case of a

integer/half-integer value of a molecular spin. In particular, we use the values of spin known for a Fe4 SMM, SN = 5 for a neutral molecule

and SN+1 = 9/2 for a charged one [5]. (a),(b) In the presence of exclusively uniaxial magnetic anisotropy D > 0 (and without magnetic field,

B = 0) an energy barrier protecting the molecule’s spin against reversal between two opposite, energetically degenerate, orientations arises.

The excitation between the ground-state doublet and the first excited doublet is then commonly referred to as the ZFS. (c),(d) If additionally the

transverse component of magnetic anisotropy occurs, it allows for mixing of pure Sz states. Each new eigenstate is then formed from Sz states

belonging to one of two uncoupled, time-reversed sets, as schematically marked by two different colors. As follows from the Kramers theorem,

for SN = 5 the transverse magnetic anisotropy introduces tunnel splittings �, whereas for SN+1 = 9/2 all states remain doubly degenerate.

(e),(f) A characteristic feature of such anisotropic, large spins is that when an external magnetic field B is applied along the system’s hard axis,

one observes periodic changes of the tunnel splittings [1,14]. Other parameters assumed in the calculations: DN = 56 µeV, DN+1 = 68 µeV,

and EN/DN = EN+1/DN+1 = 0.3.

capturing essential features of an SMM. As introduced in the

main text (see Sec. IV), the molecule is represented by a model

based on two giant-spin Hamiltonians [1,37,38]. This allows us

to take into account the fact that by tuning a gate voltage Vg the

molecule can be switched between two different charge states

[5], referred to as neutral (N ) and charged (N + 1). In general,

each of this states can be characterized not only by different

values of molecular ground-state spin (SN and SN+1), but

also uniaxial (DN and DN+1) and transverse (EN and EN+1)

magnetic anisotropy constants. Using the spin raising/lowering

operators Ŝ±
n , the Hamiltonian of an SMM in the charge state n

and subject to an arbitrarily oriented external magnetic field B

takes the form given by Eqs. (1) and (2) and the Zeeman term

explicitly given by

ĤZ
n = gµbB

[

1
2
Ŝ+

n sin θ e−iφ + 1
2
Ŝ−

n sin θ eiφ + Ŝz
n cos θ

]

,

(B1)

with the angles θ and φ defined as illustrated in Fig. 1(b).

Noteworthily, by keeping the same value of θ and φ for both

charge states, we implicitly assume that the orientation of the

molecule’s principle axes set by magnetic anisotropy is not

affected by charging. This assumption does not necessarily

hold for real systems as shown in Refs. [5] and [24]. However,

since the tilting, if observed, usually does not exceed few

degrees, we do not include such an effect into the present

considerations.

2. How does magnetic anisotropy affect the energy

spectrum of a large spin?

Before we analyze how electronic transport probes the

transverse magnetic anisotropy of a molecule, it may be

instructive first to discuss the consequences of the transverse

magnetic anisotropy and external magnetic field for the SMM’s

energy spectrum.

To begin with, as long as the transverse magnetic anisotropy

is vanishingly small the system can be described simply

by the first term of the Hamiltonian (2). As a result, the

eigenvalues Mn of the spin operator Ŝz
n become good quantum

numbers for labeling the eigenstates of ĤSMM,n = −Dn(Ŝz
n)2,

that is, ĤSMM,n|Mn〉 = −DnM
2
n |Mn〉. For Dn > 0 the energy

spectrum of an SMM takes the form of an inverted parabola

with an energy barrier of height ∼DnS
2
n for spin reversal,

which basically corresponds to the indirect transition between

the ground states | − Sn〉 and |Sn〉 by climbing the barrier via

the intermediate states |Mn〉 (for Mn = −Sn + 1, . . . ,Sn − 1);

see Figs. 12(a) and 12(b). Importantly, the excitation energy

between the ground state | ± Sn〉 and the first excited state

| ± Sn ∓ 1〉, ZFS = (2Sn − 1)Dn, sets the threshold energy

scale for the reversal process to take place. Note that transition

energies between neighboring excited states |Mn〉 and |M ′
n〉

with |Mn − M ′
n| = 1 are characterized by energies (2Mn −

1)Dn (for 0 < Mn < Sn) that are smaller than the ZFS, and

these states remain generally unpopulated until the ground-to-

first excited-state transition becomes energetically permitted.

This bottleneck behavior manifests then in electronic transport

035442-10



PROBING TRANSVERSE MAGNETIC ANISOTROPY BY . . . PHYSICAL REVIEW B 91, 035442 (2015)

FIG. 13. (Color online) Signatures of the transverse magnetic anisotropy in electronic transport (magnetic field along the hard axis, θ = 90◦

and φ = 0◦). Analogous to Figs. 3(b)–3(d) with each column corresponding now to a different value of E/D: (a)–(d) occupation probabilities

for several lowest-in-energy states in the spin multiplets for N and N + 1 at T = 1.8 K; (e)–(h) transition energies εk
N+1 − εk′

N relevant for the

SET processes at the Coulomb resonance (i.e., ε0
N+1 = ε0

N is restored for each B by tuning Vg) for k,k′ ≤ 4. Different colors of lines are used to

distinguish groups of transitions with respect to possible combinations of indices k and k′ [see the discussion regarding Figs. 3(c) and 4; (i)–(l)

energies εk
n for n = N,N + 1 at the Coulomb resonance (observe that the curves for k = 0 overlap); (m)–(p) Dependence of the current on

the number of spin-multiplet states r included from each charge state. The left (right) most column represents the case of absent (significant)

transverse magnetic anisotropy. Importantly, each column shows a detailed analysis of selected conductance curves from Fig. 2(c). We note

that transition-energy lines in (e)–(h) can be easily identified with the use of Fig. 4(a). It can be seen that increasing E/D results in shifting the

minima of the transition-energy curves in (e)–(h) towards higher values of the field. Such a behavior, in turn, affects the occupation probabilities

(a)–(d), so that the probability of finding an SMM in either the ground (k = 0) or the first excited (k = 1) state for both charge states N and

N + 1 remain equal for a larger magnetic-field range (compare the outermost columns). Recall that the position of the CP is fixed mostly by

D; see Fig. 8.

through an SMM, where it can be observed as a steplike feature

in the conductance only at bias voltages Vb = ±ZFS/|e|

[5,13].

The relatively simple picture presented above is not valid,

however, if the transverse magnetic anisotropy (or an external

magnetic field perpendicular to the molecule’s easy axis) is sig-

nificant. When E �= 0, the second term of the Hamiltonian (2)

breaks the system’s rotational symmetry around the easy

axis z, so that Mn is no longer a good quantum number. In

fact, each of the 2Sn + 1 eigenstates of Ĥn = −Dn(Ŝz
n)2 +

(En/2)[(Ŝ+
n )2 + (Ŝ−

n )2] is now a linear combination of the

eigenstates |Mn〉, which, in turn, underlies the origin of the

035442-11



M. MISIORNY et al. PHYSICAL REVIEW B 91, 035442 (2015)

FIG. 14. (Color online) Signatures of the transverse magnetic anisotropy in electronic transport (magnetic field along the intermediate axis,

θ = 90◦ and φ = 90◦). Generally, this figure is analogous to Fig. 13, except that now the external magnetic field is rotated to align with the

molecule’s intermediate (y) axis. To begin with, we note that the results shown in the leftmost column (i.e., for E/D = 0) are identical to those

in the leftmost column of Fig. 13, which is the manifestation of the molecule’s rotational symmetry about the easy (z) axis in the absence of

transverse component of magnetic anisotropy. Unlike for the case of φ = 0◦, the consequence of the increase of E/D is the displacement of

the transition-energy curves minima (e)–(h) towards smaller values of the field. Interestingly enough, in the situation under discussion one thus

observes a more abrupt decrease of the current [see dashed lines in (m)–(p)] for larger E/D occurring at smaller values of B.

quantum tunneling of magnetization [12]. In particular, each of

these eigenstates is formed from states |Mn〉 belonging to one

of two uncoupled, time-reversed sets, as shown in Figs. 12(c)

and 12(d). For an integer spin Sn, the transverse magnetic

anisotropy leads to splitting of energy levels, usually referred

to as tunnel splittings, Fig. 12(c), whereas for a half-integer

spin Sn (in the absence of magnetic field), according to the

Kramers theorem, each energy level is doubly degenerate,

Fig. 12(d). Interestingly, if one applies an external magnetic

field in the direction perpendicular to the system’s easy axis z,

periodic changes of these tunnel-splittings can be observed if

the field is oriented along or close the hard axis x, Figs. 12(e)

and 12(f), and they disappear as the field gets rotated towards

the direction of the intermediate axis y [1,12,14].

3. Transport in the single electron tunneling regime

For a weak tunnel coupling between an SMM and

electrodes, transport in the single electron tunneling (SET)

regime can be considered in the leading-order perturbative

approach (Fermi golden rule combined with a master equation)

[16,28,29].

We describe metallic, nonmagnetic electrodes [q =

(L)eft,(R)ight] as reservoirs of noninteracting electrons,
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FIG. 15. (Color online) Dependence of transport signatures of the transverse anisotropy on the orientation of magnetic field in the hard

plane (θ = 90◦) for E/D = 0.17. Analogous to Figs. 3(b)–3(d), with each column corresponding now to a different value of φ. Note that the

case of φ = 0◦ is presented in Figs. 3(b)–3(d). Furthermore, here each column shows a detailed analysis of selected conductance curves from

Fig. 2(d).

whose tunneling processes to/from a molecule are modeled

by the Hamiltonian

Ĥtun =
∑

qklσ

t
q

l d̂
†
lσ â

q

kσ + H.c.

=
∑

qkσ

∑

aNbN+1

T
σq

aN+1bN
|aN+1〉〈bN |â

q

kσ + H.c., (B2)

with

T
σq

aN+1bN
=

∑

l

t
q

l 〈aN+1|d̂
†
lσ |bN 〉, (B3)

where t
q

l is the tunneling matrix element, d̂
†
lσ represents

creation of an electron with spin σ in the molecular orbital l,

and â
q

kσ denotes the annihilation operator for the qth electrode

with k standing for an orbital quantum number. Note that the

molecular state has been expanded in the basis of eigenvectors

|aN+1〉 and |bN 〉 of ĤSMM =
∑

n=N,N+1 ĤSMM,n. Next, we

express the molecular eigenstates |aN 〉 and |bN+1〉 with respect

to the basis of angular momentum (spin) eigenstates. In

principle, an arbitrary molecular state can be decomposed as

|χn〉 =
∑

SnMn
χSnMn

|SnMn〉. As a result, one obtains

T
σq

aN+1bN
=

∑

l

∑

SN+1MN+1

∑

SN MN

t
q

l a∗
SN+1MN+1

bSN MN

×〈SN+1MN+1|d̂
†
lσ |SNMN 〉. (B4)

The key problem one encounters when analyzing the above

equation is that the operator d̂
†
lσ involves two degrees of

freedom, namely, the orbital one (l) and the spin one (σ ).

Consequently, it may seem that in the next step we need

035442-13



M. MISIORNY et al. PHYSICAL REVIEW B 91, 035442 (2015)

FIG. 16. (Color online) Evolution of the CP amplitude in the absence of transverse magnetic anisotropy (E = 0). This figure serves to

illustrate the fact that even if the transverse magnetic anisotropy is absent, by making the uniaxial magnetic anisotropy parameter D smaller

(keeping a fixed temperature), one can eventually also produce a maximum as for E �= 0. However, this maximum occurs at a completely

different (smaller) value of magnetic field. Moreover, the shape of Gmax(B) remains invariant under rotation of the field in the hard plane; this

is when the angle φ is varied. None of these are the case in the experiment under discussion. (a),(b) Dependence of Gmax(B) on the value

of the uniaxial magnetic anisotropy parameter D ≡ DN (and DN+1 = 1.2D) for an external magnetic field applied along the molecule’s hard

axis (θ = 90◦ and φ = 0◦). A detailed analysis of selected curves from (a),(b) is carried out in (c)–(s), with each column corresponding to the

indicated value of D.
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to calculate 〈SN+1MN+1|d̂
†
lσ |SNMN 〉 explicitly. This com-

plication, however, can be avoided by making use of the

the Wigner-Eckart theorem [39], which basically allows for

finding matrix elements of an operator with respect to angular

momentum eigenstates,

〈SN+1MN+1|d̂
†
lσ |SNMN 〉 = 〈SN ,MN ; 1

2
,σ |SN+1,MN+1〉

×〈SN+1||d̂
†
l ||SN 〉. (B5)

The first factor of the right-hand side is a Clebsch-Gordan

coefficient for adding spins SN and 1/2 to get SN+1. This

depends only on how the system is oriented with respect to

the z axis. On the other hand, the second factor, the so-called

reduced matrix element, remains independent of the spatial

orientation, as it does not contain the magnetic quantum

numbers MN , MN+1, or σ . Thus, we get

T
σq

aN+1bN
=

∑

SN SN+1

T σ
aN+1bN

T
q

SN+1SN
, (B6)

with

T σ
aN+1bN

=
∑

MNMN+1

a∗
SN+1MN+1

bSN MN

×〈SN ,MN ; 1
2
,σ |SN+1,MN+1〉, (B7)

and the term T
q

SN+1SN
=

∑

l t
q

l 〈SN+1||d̂
†
l ||SN 〉 regarded in

calculations as a single free parameter to be adjusted for

each electrode. Specifically, assuming a symmetric coupling

between the molecule and two identical electrodes (tLl =

tRl ), the tunnel coupling takes the from ŴL = ŴR = Ŵ/2,

where Ŵ = 2πρ|TSN+1SN
|2 and ρ denotes the constant, spin-

independent density of states in electrodes.

The stationary current I flowing through a molecule is

calculated as I = (IL − IR)/2, where Iq (for q = L,R) stands

for the current flowing from the qth electrode to the molecule,

Iq =
eŴ

2�

∑

nn′

∑

anbn′

(n′ − n)fq(�εbn′,an
)
∑

σ∈q

∣

∣T σ
bn′,an

∣

∣

2
Pan

. (B8)

where �εb,a = εb − εa , and fq(ω) = {1 + exp[(ω −

µq)/(kBT )]}−1 is the Fermi-Dirac function of the qth

electrode, with T and µL(R) = µ0 ± eVb/2 standing for

temperature and the relevant electrochemical potential,

respectively. The probabilities Pan
of finding an SMM in a

specific state |an〉 are then derived from a stationary master

equation [16]. Finally, since SMMs are typically characterized

by long spin coherence and spin relaxation times as a result of

a weak spin-orbit and hyperfine coupling to the environment

[2,40,41], we neglect relaxation of the spin states due to

processes other than due to the electron tunneling.

In Fig. 3(d), and also in Figs. 13–16, we present the current

Ir = (I r
L − I r

R)/2, which includes first r lowest-in-energy

states in the spin multiplet of each charge state. We use this to

show that many excited states in both charge state have to be

taken into account in order to describe current correctly. We

define I r
q as

I r
q =

eŴ

2�

∑

nn′

∑

bn′

r
∑

′

an

(n′ − n)fq(�εbn′,an
)
∑

σ∈q

∣

∣T σ
bn′,an

∣

∣

2
Pan

,

(B9)

with (
∑′

)ran
denoting summation over states |an〉 in the charge

state n that is limited only to first r states of lowest energy.

4. Signatures of the transverse anisotropy parameter E without

the Berry-phase oscillations

In Figs. 2(a) and 3 we discuss the initial increase of the

current with magnetic field followed by a decrease. The key

insight of our calculations using the method described in the

previous section (Appendix B3) is that the mechanism for

this effect is significantly enhanced and modified for E �= 0,

giving rise to the characteristic Gmax curves shown in Fig. 2.

Since this is at the basis of our scheme of detection, it deserves

a further comment. In particular, the relation to the Berry-

phase oscillations which underlay most of the previously used

techniques for determining the parameter E.

(i) Upon increase of E the minima of the transition-energy

curves are shifted to higher field values and the value achieved

at the minimum is lowered; cf. Fig. 3(c) with Figs. 13(e)–

13(h). For a fixed temperature, this leads to a more pronounced

maximum conductance attained at a higher field value.

(ii) Generally, the transition energies in Fig. 3(c) show

sharp features (i.e., oscillations below B = 2 T) due to Berry-

phase interference on which several techniques for extracting

E rely, by analyzing the field dependence of the tunnel

splitting between two selected states [1,12,14,19]. However,

the detection of such behavior in the conductance requires

very specific low-temperature conditions. This is in contrast to

the present experimental conditions where these Berry-phase

features are averaged out when taking into account multiple

accessible states. This leaves only the large-scale, collective

variations of the transition-energy spectrum caused by E,

which, as we have shown, suffice for estimation of E. In

Fig. 3(d) we illustrate the importance of taking into account

many excited states for both charge states to describe current

correctly.

(iii) Finally, Fig. 2(c) shows the relative CP amplitude for

increasing E/D. A qualitative distinction from the E ≪ D

limit is the appearance of an additional shoulder close to B = 6

T. It is tempting to see such a shoulder in the sample A curve

of Fig. 2(a), although the sample B curve exhibits features

of similar size where it should theoretically be smooth. In

summary, the calculations certainly show that a sizable E term

leads to fingerprints in the linear conductance as clear as those

for the D term, even for relatively high temperatures.
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