001     280903
005     20210129221437.0
024 7 _ |a 10.1186/s12859-015-0714-x
|2 doi
024 7 _ |a 2128/9723
|2 Handle
024 7 _ |a WOS:000360426000008
|2 WOS
024 7 _ |a altmetric:4467684
|2 altmetric
024 7 _ |a pmid:26335531
|2 pmid
037 _ _ |a FZJ-2016-00614
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Holl, Sonja
|0 P:(DE-Juel1)132139
|b 0
|u fzj
245 _ _ |a Scientific Workflow Optimization for Improved Peptide and Protein Identification
260 _ _ |a London
|c 2015
|b BioMed Central
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453206659_25282
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Background: Peptide-spectrum matching is a common step in most data processing workflows for massspectrometry-based proteomics. Many algorithms and software packages, both free and commercial, have beendeveloped to address this task. However, these algorithms typically require the user to select instrument- andsample-dependent parameters, such as mass measurement error tolerances and number of missed enzymaticcleavages. In order to select the best algorithm and parameter set for a particular dataset, in-depth knowledgeabout the data as well as the algorithms themselves is needed. Most researchers therefore tend to use defaultparameters, which are not necessarily optimal.Results: We have applied a new optimization framework for the Taverna scientific workflow management system(http://ms-utils.org/Taverna_Optimization.pdf) to find the best combination of parameters for a given scientificworkflow to perform peptide-spectrum matching. The optimizations themselves are non-trivial, as demonstrated byseveral phenomena that can be observed when allowing for larger mass measurement errors in sequence databasesearches. On-the-fly parameter optimization embedded in scientific workflow management systems enables expertsand non-experts alike to extract the maximum amount of information from the data. The same workflows could beused for exploring the parameter space and compare algorithms, not only for peptide-spectrum matching, but alsofor other tasks, such as retention time prediction.Conclusion: Using the optimization framework, we were able to learn about how the data was acquired as well asthe explored algorithms. We observed a phenomenon identifying many ammonia-loss b-ion spectra as peptideswith N-terminal pyroglutamate and a large precursor mass measurement error. These insights could only be gainedwith the extension of the common range for the mass measurement error tolerance parameters explored by theoptimization framework.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 1
700 1 _ |a Mohammed, Yassene
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zimmermann, Olav
|0 P:(DE-Juel1)132307
|b 2
|u fzj
700 1 _ |a Palmblad, Magnus
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1186/s12859-015-0714-x
|0 PERI:(DE-600)2041484-5
|p 284
|t BMC bioinformatics
|v 16
|y 2015
|x 1471-2105
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/280903/files/art%253A10.1186%252Fs12859-015-0714-x.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:280903
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132139
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132307
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC BIOINFORMATICS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21